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Chapter 1   A Road Map
This is a text book—whose purpose is to teach you about computer 
programming.  Before we can begin, the objectives of the this, and the path 
it will take, must be outlined.  Thus, Chapter 1 introduces this book and also 
provides a brief introduction to computers.
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1.1 Preview



This is a text book—it is intended to teach you about computer 
programming.  Learning is like a journey and, with any journey, it is helpful to
know something about the terrain before setting out, for you can make 
proper preparations and know what will be expected of you.  This chapter 
provides you with a road map of your journey.  The coming pages will present
a great deal of detailed matter and it is all too easy to get mired down in this 
detail and lose sight of how it fits in with the whole.  Here is a very general 
view that will allow you to gain a picture of where the details are leading.
This chapter is presented in two major sections, starting with an introduction 
to The Principles of Programming which contains the following subsections:
• A Global View  describes the layout of the text book’s material in very 
general detail.  This sub-section also offers an idea of the way in which 
Principles of Programming should be read and studied.
• The Road Ahead  gives a very brief synopsis of each chapter so that 
you can visualize how all the chapters fit together.  This provides a route that
will take you from an introduction to computers (the last section in this 
chapter) to being able to write large useful programs.
• Road Signs describes the common pattern on which each of the 
chapters are based, tells you how to read the road signs, and gives a brief 
explanation of some of the visual aids that will be used throughout the book.
As you can see, the first section of this chapter is organized to go from the 
very general to the particular.  This is no accident.  A major technique 
presented in this book is that of starting with an overview and then filling in 
the details.  This technique is called the “top-down approach” and you will be
meeting it again and again on your journey.
Finally, a section introducing computers is provided.  Computers are the 
physical machines that execute (or “run”) programs.  These machines are 
capable of performing a relatively small number of different operations.  
Such operations, which can be combined to carry out complex tasks, include:
• Arithmetic operations, such as the addition, subtraction, multiplication,
and division of numbers.
• Comparison operations, such as determining whether one number is 
greater than another.
• Input and output operations, such as accepting data from a keyboard 
or displaying data on the screen.
It is not necessary to know much about the detailed construction of 
computers in order to use, or program, them.  At the end of this 



chapter, we provide only a brief introduction into the structure of a computer
and a computing system.  This section also ends with a brief glance at 
history.  This view, of both computing and world history, should put the brief 
lifetime of computers and computing into its proper perspective.

1.2 Introduction to The Principles of Programming
A Global View
The goal of this book is to teach you how to program computers.  At the 
beginning, no previous knowledge of computers is assumed although, these 
days, it is almost impossible to grow up without gaining some familiarity with
the vocabulary and concepts of computers.  Nevertheless, to make sure that 
everybody starts at the same level, we have assumed nothing and describe 
everything we need.  If you come to a section that you think you already 
know, please do not skip it, there may well be an important nugget of 
information that is new to you.
Learning to write computer programs is very much like learning any skill—
you must first understand the underlying principles upon which the craft is 
based and then practice, practice, practice.  For example, you can read all 
the books ever published about riding a bicycle but, until you actually get on 
one and start pedaling on your own, you will not know how to ride a bicycle.  
The same applies to computer programming! Here, we provide the first book,
the Principles of Programming, which treats computer programming in 
general.  A second book, the Practice of Programming describes the 
application of the principles to a particular language—the way in which a 
computer program is expressed so that it can be used on a computer.
We can make an analogy with natural language.  There are certain principles 
of language, such as the distinction between nouns—names of things— and 
verbs— names of actions— that apply to all human languages.  However, the
way in which these principles are expressed and the detailed rules that apply
to them varies considerably from language to language.  For instance, the 
rules of French are different from the rules of German and they are both 
different from the rules of English.  The situation is similar with programming 
languages; there are many different languages each with its own set of rules.
For this reason, there is one Principles and several versions of Practice, one 
for each of the programming languages we cover.
This book emphasizes the adage, “it’s best to learn through examples.” 
Keeping this in mind, each chapter uses many examples to 



teach the same point.  For this reason, you may find the number of examples
overwhelming and you should feel free to pay attention to only the examples
which you feel best describe the point that is being illustrated.
The Road Ahead
In this section, we give a brief summary of what is in each chapter of the 
Principles of Programming.  A synopsis of each chapter is presented so that 
you can visualize the road ahead.
• Chapter 2, Problem Solving and Computers, contains an overview of 
problem solving with a computer.  It introduces the idea of formulating the 
solution to a problem into a set of precisely defined actions—an algorithm.  It
also emphasizes that problem solving without method is doomed, and 
introduces a seven step problem solving method that will help you design, 
write, and run computer programs.  An algorithm is expressed in a form that 
can be communicated with both people and computers through the use of a 
programming language and you are shown examples an algorithm expressed
in different programming languages.
• Chapter 3, Algorithms, gives a more detailed introduction to algorithms
and discusses their necessary and desirable properties.  This chapter shows 
that algorithms can be represented in different ways:  in English sentences, 
as formulas, tables, in various graphical forms, or in pseudocode—a stylized 
English that is similar to a programming language.
• Chapter 4, Algorithm Structure, is an introduction to the construction of
algorithms using four basic blocks—forms—that are interconnected in a 
simple way.  The Four Fundamental Forms, Sequence, Selection, Repetition, 
and Invocation are studied in some detail, including the way in which they 
can be put together to create complete algorithms.  A number of examples 
based on everyday experiences is used to illustrate the various forms.
• Chapter 5, Algorithm Behavior, discusses the dynamic behavior of 
algorithms.  A representation of the data manipulated by programs is used to
illustrate the concept of variables.  The execution of various algorithms is 
traced step by step in order to show how variables operate and how their 
data values are changed.
• Chapter 6, Bigger Blocks, expands on the concepts introduced in 
Chapter 5.  In particular, this chapter shows how programs can be made 
more general by using data obtained from outside the computer.  The 
construction of more complex algorithms, always based on interconnects of 
the Four Fundamental Forms, is also demonstrated.



• Chapter 7, Better Blocks, describes in detail the concept of 
subprograms.  Invocations are examined to show how the various steps of 
the algorithm are executed and the various ways in which data are passed 
between calling program and called subprograms.
• Chapter 8 Data Structures shows that data are usually more than 
simple values.  Most data are more complex than that and have some 
structure.  In this chapter, three basic data structures are introduced:  arrays,
records, and sets.  Arrays are groupings of homogeneous items that are 
accessed by their position in the group.  Records are groupings of possibly 
heterogeneous items that are accessed by using names for the individual 
items.  Sets are collections of distinct homogeneous items whose only 
property is whether they are in the group or not.  This chapter also explores 
the concept of an abstract data type, seen as a class of data, defined 
through its values and operations.
• Chapter 9 Algorithms to Run With:  The primary purpose of this chapter
is to provide more extensive examples of how to use the data structures 
introduced in Chapter 8.  At the same time, the chapter introduces a number 
of standard algorithms that are used frequently in programs.  These 
algorithms are particularly concerned with sorting—the arranging of data into
a specific sequence—and searching—the retrieval of specific data from a 
collection.  Other ways of arranging data (like stacks, queues, and trees) are 
also described.  Finally, a way of building dynamic data structures by way of 
pointers, is introduced.
• Chapter 10 Seven Step Method:  In this final chapter, we return to the 
seven step method for solving a problem on a computer that was introduced 
in Chapter 2.  The method is completely revised with a complete example 
illustrating each step.  Another complete example is developed from start to 
finish..
Signs Along the Road
Although each chapter constitutes a stage in our learning journey, 
introducing new topics and conventions while expanding on others, the same
basic pattern is followed:

1. Each chapter begins with a Preview that gives a summary of the 
material that will be presented in the chapter.  This will give you an idea of 
what to expect and introduce you to the major concepts in the chapter.

2. Next, the actual material of the chapter is provided, where the 
major topics are divided into sections.  Since the emphasis through each 
chapter is that we learn best by example, each section has many examples 
illustrating the topic being presented.



3. Following this, a Review of the material contained in the chapter 
is presented in a “top ten” format.  This will serve to remind you of what you 
have learned and nudge you to go back and reread anything that you have 
forgotten.

4. Next, a Glossary of the major terms introduced in that chapter is 
provided.

5. Finally, each chapter ends with a set of Problems to solve.  This is
one of the most important parts of each chapter.  There are always a few 
problems for which the solutions are provided in an appendix at the end of 
the book (Solutions Appendix).  You are encouraged to try your hand at these
before looking at the solutions.  In any case, programming is an intensely 
practical skill that can only be acquired by practice.  Remember:  “Practice 
makes perfect!”
Apart from following a similar pattern, each chapter uses many signs to 
visually illustrate important points and concepts.  The most frequently used 
visual aids are note (or tip) boxes.  An example is provided below.
Note: This is a tip or note box.  Inside this box, important information and tips
can be found.
This is a note in margin which directs you to useful information.
In addition to tip boxes, when a paragraph briefly touches upon a subject 
which is covered in more detail in another chapter, a reference is provided in 
the left margin.

1.3 Computers
A Low Level View
As you progress, you’ll use the computer to do more and more complex 
things.  It’s always nice and sometimes even actually useful to know more 
about the tools you use, so we’ll take a look here at computers.
Most computers, big or small, have the same basic capabilities:  they can 
input (“read”) data from an external device and store it for later use, they 
can manipulate the stored data by executing the instructions that constitute 
a program and they can output (“ write”) results onto an external device.
You do not need to know many details on computers in order to program 
them, just as you don’t need to know many details about carburetors or 
transmissions in order to drive cars.  Of course, knowledge of these details 
may be useful, but is not always necessary.  It is only when trying to make 
the best and most efficient use of computers that these details become 
important.
Computers differ in details, but they have a common structure.  They can be 
viewed as comprising four units:  a processing unit,  a 



memory unit, an input unit and an output unit.  These units are not always 
physically separate, but it is useful to view them functionally this way as in 
Figure 1.1.
A Memory Unit stores information that can be retrieved, modified and 
processed.  It not only stores the data that the program will process, but also
the actual instructions of the program.  This concept of a “stored program” is
extremely important, for it makes the computer into a general purpose 
machine where changing the program in memory literally changes the 
behavior of the machine.
Figure 1.1 A simple computer
The memory can be thought of as a collection of pigeon holes, each 
referenced by a number, its “address”, just as a house number is used to 
reference a particular house in a street.  Each of these pigeon holes can 
contain an item of data or an instruction from the program.  If an item of 
data or an instruction is too big for a single pigeon hole, it is split across a 
group of adjacent pigeon holes.
The Processing Unit has two distinct functions:
• To “control” the behavior of the entire computer, and
• To perform operations on data such as arithmetic operations and 
comparisons of values.
The part of the processing unit that performs the operations on the data is 
often called an ALU, arithmetic and logic unit.  The processing unit maintains 
control through the use of a few special purpose pigeon holes called 
registers.  The control part has a program register, which contains the 
address of the program’s instruction that is currently being executed and an 
instruction register containing this instruction.  The ALU also contains 
working registers where the actual operations on the data are performed.
The Input and Output Units serve either to input information (from keyboards
or from files on disks) into the memory, or to output information (to printers 
or graphic displays) from the memory.  
Systems and Their Environments
If the physical computer as represented in Figure 1.1 were all you had, you 
would find it very hard to do much with it! In order to be able to use a 
computer, you need a number of programs to make it work:  these programs 
constitute the software part of the computer without which the hardware 
does not do anything.  Also, the user of a computer is the one to tell the 
computer what task to do.  For these reasons, a computer is not considered 
by itself, but always in relation to its environment.
In order to put computers into a proper perspective, let’s describe a 
Computer System.  The system shown in Figure 1.2 is a large one so that we 
can introduce a lot of new terms; smaller personal computers 



are, of course, much simpler.  In the large computing system, notice that the 
computer is one small component (in the center).  This is generally referred 
to as the central processor unit, or CPU.  Here, we look at computing from 
the view of a computer interacting with both the human and the physical 
environment.
Figure 1.2 A complete computing system
Human Environments,  such as in a business computer system, are shown to 
the left of Figure 1.2.  People can supply data to the computer through input 
devices such as keyboards, mice and scanners that can, for example, sense 
bar-coded data, or sensors that can be touched on appropriate places of a 
display.  People receive the results from the computer on video display 
terminals, printers, plotters or through audio speakers.  These and other 
input-output, “I/O”, devices connect to the system through an input-output 
signal cable usually referred to as a “bus”.   
Physical Environments,  such as those found in a manufacturing plant, are 
shown at the top right of Figure 1.2.  The physical environment 
communicates through converters that transform physical quantities 
(distance, pressure, time) from their continuous (analog) values into 
equivalent discrete (digital) values.  These converters are known as analog-
to-digital (or A to D) converters.  The analog values are obtained from 
transducers, such as a sensor measuring temperature.  Similarly, digital-to-
analog (D to A) converters transform digital values into continuous values 
that could, for example, control a manipulator to regulate the source of heat.
The memory of a computer can be extended by auxiliary memory devices as 
shown to the right of Figure 1.2.  Such devices include magnetic tape, disk, 
semiconductor memory, bubble memory, and any other type which can be 
“plugged onto” the memory bus.  Other auxiliary devices may be “hung 
onto” this system, as shown on the bottom of Figure 1.2.  These devices 
include other computers and “modems”, which are connections to 
communication lines such as the public telephone system.
Hardware is the term that refers to these many physical devices of the 
system.  Since people and mechanical devices operate thousands of times 
slower than electronic devices, the computer can service all of the devices 
“polling” them hundreds of times a second to see, for example, if they have 
data ready for input.  Thus, the system appears to operate all of the devices 
simultaneously, much like a busy chef cooking with several frying pans at 
once.
Software is the term that refers to all of the programs required to operate the
system.  This includes the translators (to convert high level languages into 
machine languages), utility programs (for 



convenience of editing, program storage and retrieval, and so on), and 
operating programs (for loading application programs, scheduling resources, 
and managing memory).
History of Programming and the Earth
Computers have been commercially available for only about forty years, so 
their history is recent.  To put this history into perspective, let’s first view the 
complete history of the earth and end with the history of computing.  This 
will allow us to show an example of a break-out diagram, which will be 
explained in more detail in Chapter 2.
The early history of the earth could start with the geological levels called 
eras, which break up into periods, which in turn break up into epochs as 
shown in Figure 1.3.
Figure 1.3 Earth history   Geological break-out diagram
Recent history is briefly shown in Figure 1.4.  You may wish to add your own 
favorite historical events.  Notice that the classical levels (the last 2000 
years) are a very small part of the history of the earth.  An even smaller part 
is the history of computing shown on the right-hand side of Figure 1.3.
Figure 1.4 Earth history, More recently
In the classical levels of Figure 1.4, going from AD 1 to 1800, we find a 
number of persons who had an influence on computing.  For instance...
• Al-Khwarizmi, a ninth century mathematician, studied sets of rules 
which are now called algorithms (named after him).
• Blaise Pascal, a French mathematician and philosopher, designed the 
first mechanical adding machine in 1642.
• Based on Pascal’s machine, Gottfried Wilhelm von Leibniz, a German 
mathematician, created a mechanical calculating machine that could 
perform both addition and multiplication in 1694.
• In the more recent period going from 1800 to 2000, we find others who
influenced modern computers.  In 1801, Joseph Jacquard, a Frenchman, 
developed a loom for weaving cloth with patterns controlled by punched 
cards.
• In the 1840s, George Boole discovered that the symbolism of 
mathematics could be applied to logic.  His algebra forms a basis for both the
hardware (interconnections of components) and also the software (programs 
with compound conditions).
• Charles Babbage, an English mathematician, designed in the l850s the 
first general-purpose “analytical engine" with a sequential control using 
rotating wheels.  His machine could not be completed, however, because of 
technological problems.



• Herman Hollerith, an American engineer, developed around l890 
punched card machines from Jacquard’s idea and applied it for processing 
census data.  The size of punched cards, now obsolete, is based on his 
choice, the size of a dollar bill of that time.
• Alan Turing introduced in l937 a conceptual model of computability and
a theoretical device called a Turing Machine, which was used to define limits 
on what is computable.
• John Von Neumann, around l945, introduced the concept of a stored 
program, where instructions and data are both stored in memory.
Later developments are too recent to be objectively put into historical 
perspective.  For example, it was initially believed that the first electronic 
digital computer was designed and built by John W.  Mauchly and J.  Presper 
Eckert around 1945.  However, after a court case ending in 1973, the father 
of the electronic computer was determined to be John V.  Atanasoff who had 
created a small electronic special purpose computer in 1939 at Iowa State 
University.  However, at the same time in Germany, Konrad Zuse was 
developing computers that were more general than Atanasoff’s!

1.4 Review   Top Ten Things to Remember
1. The Principles of Programming is the first in a series of books.  It 

teaches computer programming in general while a second book, the Practice 
of Programming, describes the application of the principles to a particular 
language.

2. Most computers, big or small, have the same basic capabilities:  
they can input (“read”) data from an external device and store it for later 
use, manipulate stored data by executing the instructions that constitute a 
program and they can output, or write, results onto an external device.

3. Computers can be viewed as comprising four units:  a processing
unit, a memory unit, an input unit and an output unit.

4. The Processing Unit has two distinct functions:  to “control” the 
behavior of the entire computer and to perform operations on data such as 
arithmetic and comparisons between values.  The part of the processing unit 
that performs the operations on the data is often called an ALU, arithmetic 
and logic unit.

5. A Memory Unit stores information that can be retrieved, modified
and processed.  It not only stores the data that the program will process, but 
also the actual instructions of the program.

6. Memory can be thought of as a collection of pigeon holes, each 
referenced by a number—an address.  Each of these pigeon holes can 
contain an item of data or an instruction from the program.



7. The Input and Output Units serve either to input information 
(from keyboards or files on disks) into the memory, or to output information 
(to printers or graphic displays) from the memory.

8. Hardware is the term that refers to the many physical                  
devices of a computer system.

9. Software is the term that refers to all of the programs required to
operate a computer system.

10. Computers have been commercially available for only about forty
years, so their history is recent; too recent to be objectively put into 
historical perspective.

1.5 Glossary

A to D converter:  (Analogue to Digital converter) A physical device that 
takes an analog or continuous value (for instance, the intensity of an electric 
current) and converts it into a digital (numerical) value.
ALU:  Arithmetic Logic Unit, a component of the computer Central Processing 
Unit that executes arithmetic and comparison operations.
Analog value:  A directly measurable physical value (temperature, current 
voltage, pressure, and so on).
Bus:  A signal transmission cable making it possible to interconnect various 
devices.
Compiler:  A piece of software used to translate a program written in a high-
level programming language into machine language.
CPU:  Central Processing Unit, the heart of the computer that controls the 
behavior of its other components and performs the operations on the data.
D to A converter:  Digital to Analog converter, a device to convert digital 
(numerical) values to their physical equivalent (current voltage, temperature,
and so on).
Editor:  A utility program that helps a user prepare data or programs for a 
later operation.
Execute:  Perform the actions associated to a program.
Hardware:  The collection of physical devices making up a computer system.
Input/Output:  The devices designed to send external information into the 
computer memory and to produce external information from the memory.
Instruction register:  A CPU register that holds the machine instruction being 
executed.
Machine Language:  A programming language that is used directly by a 
computer; synonymous with low-level language.



Memory:  The component of a computer used to store information (data and 
program instructions).
Modem:  A device used to connect a computer to other computers through 
telephone lines.
Processing unit:  CPU.
Program register:  A CPU register containing the address of the next machine
instruction to be executed (also called program counter).
Register:  Special purpose computer memory cells used to store the pieces of
information on which a machine instruction operates.
Utility program:  A computer program in general support of the processes of 
a computer, for instance, an editor, a sort program.

1.6 Problems
1 Human Environments
Which of the following are considered human environments when it comes to
the interaction between computers and humans.

a. Keyboard
b. Analogy-Digital Converter
c. Scanner
d. Mouse
e. Clock

2 Physical Environments
Which of the following are considered physical environments when it comes 
to the interaction between computers and transducers.

a. Display
b. Sensor
c. Digital-Analog Converter
d. Scanner
e. Clock

3 Influential People
Match the following list of names with their contributions to computing.  
Note:  there is one more contribution than there are contributors!
George Boole Al-Khwarizmi Charles Babbage
John Von Neumann Blaise Pascal Alan Turing

a.  developed a machine used to define the limits on what is 
computable.

b.  studied sets of rules which are now called algorithms.
c. designed and built the first electronic digital computer.
d.  discovered that symbolism of mathematics could be applied to 

logic.
e.  designed the first general-purpose “analytical engine”.



f.  introduced the concept of a stored program where instructions 
and data are both stored in memory.

g. designed the first mechanical adding machine.
4 Memory
List the three functions of the Memory Unit.  Besides data, what does the 
Memory Unit store? What happens if an item of data is too big for a single 
“pigeon-hole” of memory?
5 Hardware vs. Software
What is the difference between hardware and software? Give examples of 
both.
6. Think Big
Suppose that entire computers became as small as bugs (roaches or 
integrated circuits), and had the ability to move around and manipulate 
things (carry, measure, cut, and so on).  Write a brief essay indicating 
possible uses and potential benefits of such programmable bugs (PRUGS).
For example, many functions could be performed differently.  Lawns could be
maintained, not by mowing, but with an "army" of PRUGS roaming around 
randomly, measuring each individual blade of grass and cutting it off at a 
precise length.
7. Think Well
Write another brief essay describing the potential negative consequences of 
the PRUGS in the previous problem.
8. Do Justice to History
Select some topic in the history of computing (person, machine, program, 
era, machine, and so on) and investigate it thoroughly.  Relate this to other 
similar topics.
Chapter 2   An Overview
This chapter provides an overview of problem solving with a computer, 
showing a brief “bird’s-eye” view of the general ideas, and how they are 
related.
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2.1 Preview
Using a computer to solve a problem frequently requires programming—the 
formulation of a plan for precisely defined actions to be performed by the 
computer to obtain the solution to the problem.  Such a plan is an algorithm. 
In this chapter, we introduce a helpful method for solving a problem with a 
computer.  We also show ways of breaking up a problem into smaller 
subproblems.  Of course, in this introductory chapter, we will consider only 
some simple problems, such as the computation of part of a weekly payroll.
Algorithms are plans for performing actions.  Common examples of 
algorithms are:
• Directions for getting somewhere: Directions for Getting to Fred’s 
Pizza Parlor

1. Take Route 116 until you come to the T-junction at Route 9.
2. Turn onto Route 9and go about three-quarters of a mile and

it will be on your left.  You can’t miss it!

• A cooking recipe: Cream Horns
Roll out thinly puff or flaky pastry into an oblong approximately 12 inches 
long, and cut into 1-inch strips.  Moisten one edge of each 



strip and roll the strip around a cream horn tin, starting at the pointed end of 
the tin and overlapping the pastry very slightly.  Bake in a hot oven until 
crisp—10–15 minutes.  Slip the horns off the tins.  When they are cold, fill 
them with whipped cream and dredge with confectioners’ sugar.

• A crochet pattern: Row 2(afghan st):  1 sc in first dc, * (draw up 
loop in next st and retain loop on hook) 5 times (6 loops on hook), draw up 
loop in next st and draw this loop thru 1st loop on hook forming an upright st 
or bar (yo and thru 2 loops) 5 times *.  There are 6 bars and 1 loop on hook.  
** Retain loops on hook and draw up loop in each of next 5 bars (6 loops on 
hook), draw up loop in next st and thru first loop on hook (yo and thru 2 
loops) 5 times.  Rep from ** twice.  Insert hook in 2nd bar, yo and thru bar 
and loop on hook (1st bound off).  Bind off 4 more sts, 1 sc in next st.  Rep 
from *, ending bind off 5 sts, sl st in top of turning ch.  Ch 1, turn.
These algorithms require varying degrees of technical knowledge in order for
someone to carry them out, or execute them.  The first algorithm is 
expressed in a language that almost everybody can understand.  The second
requires some knowledge of pastry-making to understand, while the third 
requires considerable experience with crocheting and reading crochet 
patterns.
There is also a difference in the level of detail provided in each algorithm:  
the first is at a high-level and provides almost no detail, whereas the third is 
at a low-level and provides much detail— the making of each individual stitch
is defined.  Algorithms for use on computers are called program and can also
be expressed at varying levels of detail.  In this chapter, we will consider 
several examples of representations of simple algorithms.
Programming Languages are methods for representing and communicating 
algorithms, both to people and to computers.  As with the algorithms we just 
viewed, different programming languages provide varying levels of detail.  
We will be mainly concerned with languages convenient for people, referred 
to as high-level programming languages.  A low-level programming 
language, that expresses an algorithm in terms of its primitive operations, is 
so full of small details—like the crocheting pattern—that it is difficult for 
people to understand.  Luckily, computers can easily translate an algorithm 
expressed in a high-level programming language into a low-level computer 
language.  In this chapter, we will present a payroll program in a few 
different languages to provide an insight into the similarities and differences 
among programming languages.  



2.2 Problem Solving and the Computer
This book is about programming, and it is important to know that 
programming exists solely to solve problems on a computer.  Programming 
is, first and foremost, a problem solving activity.
The mathematician George Polya, an authority on problem solving, has 
divided problem solving into a four step activity:

1. understanding the problem:  This first step can be very difficult 
but is absolutely crucial.  Although it happens all of the time, it is foolish to 
attempt to answer a question that is not fully understood.  In general, one 
must find the given data, what is the unknown (the required result) and what
is the relationship that links the given data with the unknown.  It is also 
important to verify that the given information is sufficient to solve the 
problem.

2. devising a plan:  Once the problem is understood, one must 
devise the plan of action to solve the problem.  A plan is formed by 
proceeding from the data to the result according to the relationship that links
them.  If the problem is trivial, this step will not require much thinking.  
General techniques include the following:
• Finding if there are known similar problems,
• Reshaping the original problem so that it resembles a known problem
• Restricting the problem to a shorter solvable form,
• Generalizing a restricted problem, and
• Finding existing work that can help in the search for a solution.

3. executing the plan:  Once the plan is defined, it should be 
followed completely.  Each element of the plan should be checked as it is 
applied.  If parts of the plan are found to be unsatisfactory, the plan should 
be revised.

4. evaluating:  Finally, the result should be examined in order to 
make sure that it is valid and that the problem has been solved.
As we all know, there is usually more than one correct way of solving a 
problem.  When several people are faced with the same problem, it is likely 
that each individual will reach a solution in a different manner.  However, to 
be efficient, a person must adopt a systematic method of problem solving.  
When using a computer to solve a problem, the use of a systematic method 
is crucial.  Without one, people tend to rush over the steps and find out too 
late that they should have spent more time in preparation and planning.
Based on the Polya problem solving method, we introduce here a seven-step 
problem solving method that can be adapted to each person’s own problem 
solving style.  This method is closely related to 



what is known as the software life cycle (the various stages in the life of a 
program).
The seven steps of the method are:

1. Problem Definition
2. Solution Design
3. Solution Refinement
4. Testing Strategy Development
5. Program Coding and Testing
6. Documentation Completion
7. Program Maintenance

Step 1   Problem Definition
Polya’s first step is to fully understand the problem.  The initial description of 
a problem is usually vague:  it must be made precise.  The poser of the 
problem—the user—and the problem-solver must work together in order to 
ensure that both understand the problem.  This should lead to complete 
specifications of the problem including the precise definition of the input 
data—the given data—and of the desired output—the result.
Step 2   Solution Design
In this step, we want to define the outline of a solution.  Starting from the 
original problem, we divide it into a number of subproblems.  These 
subproblems, being necessarily smaller than the original problem, are easier 
to solve and their solutions will be the components of our final solution.  The 
same “divide and conquer” method is applied in turn to the subproblems 
until the whole problem has been converted into a plan of well-understood 
steps.
To illustrate this step, let’s take a simple non-computer problem such as the 
recipe for Cream Horns given in the previous section.  Based on this recipe, 
we can break down the problem into three subproblems:

1. Make the horns,
2. Prepare whipped cream, and
3. Finish the horns.

In turn, the subproblems themselves can be divided until we reach extremely
simple subproblems.  One of the products of this step is a chart that 
illustrates the structure of our solution (Figure 2.1).  This chart is called a 
structure chart because it shows the structural components of the solution as
well as the relationships between components.
Figure 2.1 Structure chart
The box at the top of the chart represents our complete solution, the three 
boxes at the next level below represent the components of that solution, and
the three boxes at the lowest level represent the sub-



components of the component Finish The Horns.  Similarly, all components 
can be broken into smaller sub-components.
Step 3   Solution Refinement
The solution designed in the preceding step is in a very high-level form.  It 
shows a general task divided into several sub-tasks with no indication given 
as to how all of these tasks are to be accomplished.  This general solution 
must be refined by adding more detail.
Each box in the structure chart produced in Step 2 (Figure 2.1) must be 
associated with a precise method to accomplish each task.  A precise method
consists of a sequence of well defined steps which, when carried out, 
perform the corresponding task.  This sequence of steps is called an 
algorithm.
Algorithms are usually developed in pseudocode—a language used to 
describe the manipulations to be performed on data.  This language is a 
simple mixture of natural language and mathematical notation.  Pseudocode 
is independent of any programming language.
For example the pseudocode for the task Prepare Whipped Cream might 
resemble Pseudocode 2.1.
Pseudocode 2.1 Prepare Whipped Cream
This particular solution is not complete because the level of detail is 
insufficient:  the stiffness of the whipped cream has not been specified.  Each
pseudocode instruction might have to be expanded to refine the solution into
a usable form.  This process of refining the pseudocode instructions to avoid 
any misunderstanding is called stepwise refinement.
Had we been working instead on solving another problem, that of computing 
the weekly pay for the employees of the ACME company, we might have 
written the following pseudocode:
Pseudocode 2.2 Setting an employee’s gross pay
Here we have used the verb Set to associate the name Gross Pay with a 
computed value.  We could also have used a more mathematical notation 
like the following.
Pseudocode 2.3 Mathematical notation in pseudocode
Care should be taken to make the algorithm check the data values for 
reasonableness.  If any data item is out of range, an error message should be
produced instead of computing a meaningless result.  This process of 
checking that the input data are acceptable is called data validation.
Step 4   Testing Strategy Development
The preceding step produces the algorithms that will be used to write the 
computer program that corresponds with our solution.  This program will be 
executed by the computer and be expected to produce the correct solution 
for our problem.  It is necessary to try 



this program with several different combinations of input data to make sure 
that the program will give the correct results in all cases
Each of these tests consist of different combinations of input data, each of 
which is referred to as a test case.  To test the program thoroughly, we must 
define an assortment of test cases that cover, not only normal input values, 
but also extreme input values that will test the limits of our program.  In 
addition, special combinations of input values will be needed to test 
particular aspects of the programs
For example, test cases for a payroll program should include values covering 
the full range of pay rates including limit values, a maximum number of 
hours worked, and so on.  A typical test case would define the hourly rate, 
hours worked, and expected result as follows:

Rate = $10.00 Hours = 35 Result = $350.00
It is best to develop test cases before writing the program because the test 
cases can be used to check our algorithms at this stage, and because the 
pressure to complete a program might lead to a loss of objectivity when 
testing on the fly.
Note: For all test cases, the expected results must be computed and 
specified before proceeding to the next step.  Complete test cases can then 
be used to check algorithms and programs efficiently.
Step 5   Program Coding and Testing
Pseudocode algorithms cannot be executed directly by the computer.  
Pseudocode must first be translated into a programming language, a process
referred to as coding.
The pseudocode produced by solution refinement, in Step 3, is used as a 
blueprint for the program.  Depending on the programming language used, 
this coding step may be somewhat mechanical; however, programming 
languages all have limitations.  These limitations can sometimes make the 
coding step quite a challenge.  Among the most commonly used languages 
are COBOL, Fortran, Pascal, C, Modula-2, and Ada.  To give an example, the 
pseudocode shown earlier for the gross pay computation could be written in 
Pascal in as illustrated in Figure 2.2
Figure 2.2 Pascal version of Pseudocode 2.2
IF Hours > 40 THEN

GrossPay := Rate * 40 + 1.5 * Rate * (Hours - 40)
ELSE

GrossPay := Rate * Hours;
Notice that the pseudocode Set...to has been replaced by “:=“ and that 
multiplication is indicated by an asterisk.  Most programming languages use 
a notation similar to this one.  Names like GrossPay are called variables and 
can be thought of as named “information 



holders” whose contents can be used and changed by statements in the 
program.  The above Pascal code would only be a small part of a complete 
Pascal program that calculates a weekly payroll
Once the algorithms have been coded, the resulting computer program must
be tested using our testing strategy.  The program must be run and, for each 
test case developed in Step 4, the results produced must match those 
computed during the development of the test strategy.  If there is a 
discrepancy, the produced results must be analyzed in order to discover the 
source of the error.  The error may lie in one of four places:
• The coding:  The error could have been formed when the algorithm 
was translated into the programming language.
• The algorithms:  The error could have existed in the algorithm and has 
never been noticed.
• The designof the program:  The program’s design may be flawed and 
lead to errors during execution.
• The computation of the expected test results:  The results for a test 
case may have been calculated wrong.
Once the error has been discovered, the appropriate revision must be made 
and the tests rerun.  This is repeated until we are sure that our program 
produces a correct solution to the problem under all circumstances.  This 
process of coding and testing is called implementation.
Step 6   Documentation Completion
Documentation begins with the first step of program development and 
continues throughout the lifetime of the program.  A program’s 
documentation must include the following:
• Explanations of all of the steps of the method,
• The design decisions that were made, and
• The problems that were encountered during the writing and testing of 
the program.
The final documentation must also include a printed copy of the program, 
called a program listing.  This listing should be made readable by careful 
layout as one does with a technical report—which is what the written form of 
the program really is:  a written description of the computer solution of the 
problem.  Programs can be made easier to understand by the reader if all of 
their complex parts include explanations in the form of comments.  Later, 
when the program must be changed, these explanations will make the 
changes easier to implement.
To be complete, the documentation must include some user instructions.  For
programs that will be used by people unfamiliar with computers, it is 
necessary to include a user’s manual that 



explains, without using technical jargon, how to use the program, how to 
prepare the input data and how to interpret the program’s results.
Step 7   Program Maintenance
Program maintenance is not directly part of the original implementation 
process.  It includes all activities that occur after a program becomes 
operational.  The term “maintenance”, when applied to programs, has a 
somewhat different meaning from normal usage.  Houses, cars and other 
objects need maintenance because they deteriorate through use.  Programs, 
on the other hand, have no physical properties, only logical properties—they 
do not need repainting and they do not wear out through use.
When we run the same program a thousand of times, some of the hardware 
components of the computer may wear out and need maintenance but the 
program can’t wear out.  However, a program can work properly nine 
hundred and ninety-nine times and then fail during the thousandth run.  This 
may give the appearance that the program has worn out, but actually the 
program encountered an unusual set of circumstances.  In other words, the 
program did not fail because it had worn out, it failed because it did not work
properly to begin with; it was never tested for this particular set of 
circumstances.  If the unusual curcumstances had occurred on the first run 
instead of the thousandth, the program would have failed on the first run.  
Thus, program maintenance is largely completing the process of 
implementation.
Program maintenance also includes implementing improvements discovered 
while using the program.  Program maintenance includes:
• eliminating newly detected program errors
• modifying the current program
• adding new features to the program
• updating the documentation
Maintenance documentation, produced specifically to help the “maintainers” 
in their work, may include design documents, program code, and information
about testing.  Often, the cost of program maintenance over the lifetime of a 
program surpasses the development costs for the original program.
Using the Problem Solving Method
The preceding sections describe the seven steps in a nice, sequential 
manner.  However, it should be understood that, in practice, all of these 
steps are not strictly sequential.  The boundaries between various steps are 
somewhat fuzzy and some steps might have to be reworked as a result of a 
later step.



In particular, you may have already noticed that documentation takes place 
throughout the whole process.  Sometimes, the problem definition step and 
the first stages of the solution design step overlap, as design decisions 
require more precision from the problem definition.  Also, the end of the 
solution design step may overlap with the beginning of the solution 
refinement step; this explains why the refinement step is sometimes called 
detailed design.  We have also indicated that the definition of a testing 
strategy sometimes uncovers missing pieces in the earlier steps.
The point is that you should get used to the idea of revising and reworking 
some of your earlier steps.  This going back and forth makes it easier to 
progress when solving a problem becomes difficult.  The important thing is 
for you to adopt a problem solving method that is well adapted to your way 
of working.
You should also be aware that the problem definition step is often difficult 
because the person with the problem may not be able to state it clearly.  
Most often, a vague perception of the problem or a weak technical 
understanding are sufficient to lead to this situation.  In these cases, an 
extended period of work with the user may be required in order to produce a 
more precise problem definition and to determine whether a computer 
solution is possible.
Problems and Plans   Dividing and Conquering
As we have seen above, planning and problem solving are the main concerns
of this book.  The problems may be large and complex (like controlling a 
factory or managing an inventory) or they may be smaller (such as making 
engineering calculations, or computing statistics).  In all cases, we’ll need to 
use our seven step method.
Even in problems that seem simple, such as computing a weekly payroll, 
there could be considerable complexity.  For example, actions that depend 
on various changing conditions, such as income tax rules, can turn 
computing a weekly payroll into a complex task.
When faced with complexity, use Step 2, Solution Design, of our seven step 
method to develop a systematic way of thinking about such problems.  As we
have already mentioned, the best way to go about solving a problem is to 
break the problem into smaller subproblems:  the “divide and conquer” 
approach.
But breaking up a problem into smaller subproblems is not always as easy as
it seems.  There are many ways to break up anything with some ways being 
better than others.  In addition, the number of subproblems required for 
computing are often so numerous that they create another problem:  the 
complexity of quantity.  Our challenge is to organize this complexity while 
avoiding confusion.



To avoid confusion, a complex problem can only be viewed by looking at a 
small number of its subproblems at any one time and seeing how they fit 
into the “bigger problem.”
Note: Solving a problem is essentially the same as the age-old method for 
cooking a mammoth...

...Break it into smaller pieces!

2.3 Break-Out Diagrams
One useful way of making the complexity of problem solving manageable is 
to use a tree-like or hierarchical skeleton for viewing problems in levels, as 
illustrated by the structure chart in Figure 2.1.  The following figures (Figures 
2.2 through 2.4) show four hierarchical representations called break-out 
diagrams..  These are another form of structure charts.
Time can be broken down into years, months, days (and further) as 
suggested in Figure 2.2.  This break-out diagram, if completely expanded, 
would create one sequence of 365 (or 366) days at the second level, and one
sequence of 8760 (or 8784) hours at the next level.
Figure 2.2 Time break-out diagram, vertical
The space in this book, represented in Figure 2.3, is broken down horizontally.
First the book is broken into chapters, then into sections.  This book space 
could be broken down further by including sentences, words and finally 
letters.
Figure 2.3 Book space break-out diagram, horizontal
Actions, such as computing a weekly payroll, can be broken down into 
smaller actions (determine the gross pay, determine the deductions) as 
shown in Figure 2.4.  Each of these sub-actions may also be broken down 
further.  In fact, the rest of this chapter will mainly be concerned with the 
subproblem of computing an employee’s gross pay
Figure 2.4 Actions break-out diagram
Data, such as the various attributes describing a person, are also easily 
described by break-out diagrams (Figure 2.5).
Figure 2.5 Data break-out diagram
Notice how break-out diagrams can describe four entities as varied as time, 
space, actions and data.  These diagrams essentially show how the long, 
linear list of small “leaves” at the right, or at the bottom, is organized or 
grouped together (into branches) forming a two-dimensional tree.  More 
importantly, these structure charts show how to break a problem into its 
subproblems.
More on Break-Out Diagrams



Break-out diagrams or BODs are very useful tools for showing the structure 
of many kinds of systems.  However, not everything that looks like a BOD is 
actually a BOD.  To be useful, BODs must have a certain structure as well as 
being:
• Consistent:  Each break-out must be of the same kind.  For example, if 
the first box involves time (as in Figure 2.2), then all of the other boxes in the
break-out should involve time.  In other words, since time is being refined, 
then all break-outs should involve time, but at a different level of detail.
• Orderly (indepent or exclusive):  all blocks at the same level must be 
separate or independent; there should be no overlapping of two break-outs.  
For example, the first break-out of Work Day in Figure 2.6 shows Lunch as 
part of the morning and of the afternoon; it should be either part of only one 
of these, or be a separate box on the same level as AM and PM.
Figure 2.6 An incorrect and a correct break-out of Work Day
• Refined:  each box of a given level must be a break-out of a box at the 
previous level.  This means that all of the boxes at the right of a BOD must fit
back into the boxes at their left.  There can be no boxes introduced that do 
not fit into previous ones.  For example, in the second impossible break-out 
of Work Day in Figure 2.7, the box labeled Read Newspaper does not fit into 
the Eat box.  Also, as the refinement continues, there should be no merging 
or rejoining of boxes.
Figure 2.7 An incorrect and correct break-out of Morning Routine

• Cohesive:  All of the items within a breakout box must fit together.  
Frequencies, shown in the break-out diagram in Figure 2.8, range from a few 
cycles per second, or Hertz (Hz), to thousands of cycles per second (kHz), to 
millions of cycles per second (MHz) and beyond.  At the left of this diagram, 
there is great cohesion.  However there is some lack of cohesion in the part 
at the right.  The VHF frequencies have a mixture of TV channels and FM 
ranges.  There is a gap between TV Channels 6 and 7 in which some FM 
channels are used.  These mixtures and gaps show a lack of cohesion.
Figure 2.8 The electromagnetic frequency spectrum
Alternative forms of break-out diagrams are often used and variations are 
possible.  Some common alternatives to BODs are called:  Warnier Diagrams,
Orr Charts, or SADT diagrams.  Some of these involve boxes in three 
dimensions, others involve parentheses and other notations



2.4 Algorithms and Their Representations
In the third step of our method, solution refinement, we refine the solution 
whose structure was defined in the preceding step.  This means that we must
give a precise definition of the actions to be performed to accomplish each 
task defined in our structure chart.  This is done by defining an algorithmfor 
each task.  It is these algorithms that will be carried out to produce the 
desired solution.
For more information on the different possible algorithm representations, see
Chapter 3.
As an example, let’s consider the computation of the weekly gross pay of an 
employee.  Here, the data are numbers while the actions are arithmetic 
operations.  The algorithm we’ll consider is very simple and will be used to 
illustrate many concepts.
Algorithms may be represented in a number of ways, as discussed below.
• Verbal representations of an algorithm can be given as statements in 
any natural language.  A verbal description of a common pay algorithm is 
shown in Figure 2.9.  The pay rate (of $10 an hour) was chosen simply to 
make multiplication easy.  Usually, more important reasons determine an 
employee’s pay rate.
Figure 2.9 A verbal algorithm
Gross Pay
If the hours worked are less than (or equal to) 40, the pay is the product of 
the number of hours worked and the rate (of $10.00 an hour).  Also, if more 
than 40 hours are worked, the pay is $15.00 an hour (time-and-a-half) for 
each of the hours over 40.

With this algorithm, if, for example, the number of hours worked is 25, 
then the pay is simply determined by multiplying the rate by the hours 
(10¥25 = 250).  But if the hours are 50, then the pay is the sum of two parts,
a regular part and an overtime part.  The pay for the first 40 hours is the 
regular rate multiplied by 40 which is (10¥40 = 400).  For the 10 hours over 
40 we use the higher rate of 15 (time-and-a-half) to get (50 – 40)¥15 = 150.  
The total pay is the sum of these regular and overtime amounts 
(400 + 150 = 550).  So a total pay of $550 is the final output of the 
algorithm.
• Flowchart representations of an algorithms are made of various boxes 
joined by arrows as in Figure 2.10.  In flowcharts the following symbols are 
used:
• Oval boxes indicate the start and the end.
• Square boxes represent actions, while



• Diamonds, or boxes with pointed ends, represent decisions to be made.
Decision boxes contain the conditions that determines which arrow will be 
followed out of them.

This graphical form makes it easy for people to follow the sequence of 
actions, or flow of control, provided the flowchart is small.  Figure 2.10 
represents the pay algorithm we just described.  Notice that in the 
computation of the pay for more than 40 hours (the box on the right of the 
diagram), the pay for the basic 40 hours is shown as 10¥40 and not as 400.  
To have shown 400 in the algorithm, would have hidden the two 
“components” of the product.  The 400 would appear as an anonymous 
“magic” number and the algorithm would be more difficult to understand.
Figure 2.10 The pay algorithm expressed as a flowchart
• Graphs (or plots) are diagrammatic representations that help people 
understand the execution of algorithms.  The graph of the pay algorithm in 
Figure 2.11 shows how the rate of pay depends on the number of hours 
worked.  In this graph, the total pay for any number of hours is actually the 
shaded area.  For example, for 50 hours, the total pay corresponds to the 
shaded area consisting of the three smaller rectangles labeled a, b and c.  
The total pay is:

PAY = 10 ¥ 40 + 10 ¥ 10 + 5 ¥ 10 = 550.
Figure 2.11 Graph of pay rate versus hours worked
• Data-flow diagrams represent algorithms as “black boxes” where you 
can’t see what happens inside.  Only the data input and output are shown as 
in Figure 2.12.  In this case, the data—50 hours—”flows” into the Gross-Pay 
computation box, and the resulting data (pay of $550) flows out the bottom.  
These diagrams hide the details of an algorithm, but they will be useful later 
to describe interaction and flow of data between algorithms.
Note: Data-flow diagrams indicate what is being done, whereas flowcharts 
indicate how it is done.
Figure 2.12 Data-flow diagram

• As we have already seen, pseudocode representations of an algorithm 
are short descriptions using a notation that is a mixture of mathematics, 
logic, and natural language.  Our pay algorithm in pseudocode is given in 
Figure 2.13.
Figure 2.13 A pseudocode algorithm
More representations of algorithms, such as flowblocks, tables, and trees, are
possible and will be considered in the next chapter.
Modifying Algorithms
Once a useful algorithm has been defined, it often goes through many 
changes in its “lifetime.” It may be made more powerful, more useful, 



more convenient, more efficient, or more foolproof.  Sometimes, it is used as 
part of larger algorithms.  The five processes for modifying are detailed 
below.
• Generalizing algorithms is the process of making them apply to more 
cases.  For example, the previous pay algorithm, shown in Figures 2.10 and 
2.13, applies only to people paid at the same constant basic hourly rate of 
$10.  This algorithm could be generalized by requiring the input of the hourly
rate in addition to the number of hours worked.  By implementing this 
generalization, the algorithm would work not only for $10, but for any hourly 
pay rate.
Figure 2.14 Generalized pay algorithm

This modified algorithm, Figure 2.14, can be used to compute the pay 
for people working at different pay rates, and is thus more general and more 
widely useful.  Actually the overtime limit of 40, which is used three times, 
could be replaced by a variable Maximum-Hours indicating the overtime 
threshold, thus making the algorithm even more general.  Thus, if Maximum-
Hours is set to 35, the overtime rate is applied to all hours worked over 35, 
and not over 40 as in the algorithms of Figure 2.13 and 2.14.
• Extending algorithms to include more cases is also very common.  For 
example, the original algorithm pays “time-and-a-half” for hours worked over
40.  Often, the overtime rate becomes even larger (up to twice the regular 
rate) when more than a certain number of hours have been worked (usually 
60).  The original algorithm of Figure 2.14 can be extended to include a 
second rate of overtime.  In this case, the original pay algorithm applies for 
the first 60 hours, and the hours over 60 are paid at double rate.  An 
extended version of the original algorithm, that allows for a double rate, is 
shown in Figure 2.15.
Figure 2.15 Extended pay algorithm
Let’s execute or “trace” this algorithm with an input value of 100 hours and 
an hourly rate of $10.00.  First the number of hours and rate are input, then 
the number of hours is compared to 60 and the rightmost path is taken out 
of the decision box into the following computation.

Pay = Rate ¥ 40 + 1.5 ¥ Rate ¥ 20 + 2 ¥ Rate ¥ (Hours - 60)
= $10.00 ¥ 40 + 1.5 ¥ $10.00 ¥ 20 + 2 ¥ $10.00 ¥ (Hours - 60)
= $400.00 + $15.00 ¥ 20 + $20.00 ¥ 40
= $400.00 + $300.00 + $800.00
= $1500.00

This formula (and others) can be derived from finding the area of various 
rectangles under a new graph of Rate versus Hours, an 



extension of Figure 2.11 shown in Figure 2.16.  Notice that by doubling the 
number of hours worked (from 50 to 100), the resulting Pay more than 
doubles (from $550 to $1500).  In fact, the Pay almost triples.
Figure 2.16 Extended graph of Rate versus Hours
• Foolproofing is the process of making an algorithm more reliable, fail-
safe, or robust, by anticipating erroneous input or other difficulties.  For 
example, if the number of hours input is more than the number of hours in a 
week (7¥24 = 168), then an error message should be produced.  The 
resulting foolproofed, or robust, algorithm is given in Figure 2.17.  It could be 
improved further to recognize the input of a negative number of hours, and 
output another error message.
Figure 2.17 Foolproofed pay algorithm
• Embedding an algorithm is the process of re-using that algorithm 
within another algorithm.  For example, the extended pay algorithm from 
Figure 2.15 is shown in the shaded box embedded in Figure 2.17.  If the 
number of hours input is smaller than the maximum number of hours 
permitted in a week, this algorithm computes the pay.
Notice that the original algorithm from Figure 2.10 also appears in slightly 
modified form embedded in Figures 2.14 and 2.15.  This shows that, when 
algorithms are well structured, they can be modified without destroying 
already existing parts.  On the other hand, when algorithms are structured 
poorly, small modifications can cause great problems.  Reuse of existing 
algorithms is also efficient and usually saves coding and testing time and 
effort.
Modification of a finished product is not common in other disciplines.  For 
example, painters do not try to touch up another painter’s painting, and 
engineers do not add a few extra wheels to an existing car.  However, in 
computer science, algorithms are modified all the time.  It is therefore 
important to keep in mind that the algorithms that you write are likely to be 
modified during their lifetimes.  In other words, create algorithms with the 
intent to make them easy to modify.  When algorithms are well designed, 
their modification can lead to better algorithms.  Otherwise, a modification 
may lead to disaster.
Alternative Algorithms
In computing, as is the case with many disciplines, there are often many 
ways of accomplishing the same thing.  This means that a choice must be 
made between the various possibilities.  For example, let’s consider the 
previous simple pay algorithm from Figure 2.10, which is repeated on the left
side of Figure 2.18.



Figure 2.18 Equivalent algorithms
The algorithm next to it, on the right side of Figure 2.18, shows an alternative
way to compute the gross pay.
First, the hours are input and the pay is computed by multiplying these hours
by the regular hourly rate ($10).  For instance, in the case of 50 hours of 
work, this would yield a value of 50 ¥ 10 = $500.
Next, the hours are compared to 40 and, if they are greater than 40, the 
hours in excess of 40 (overtime) are multiplied by 5 (half the regular rate) 
and the result added to the first value.  If the hours are not greater than 40, 
then nothing is added to the first value.  In the case of 50 hours of work, the 
overtime is
(50 - 40), or 10 hours, multiplied by the extra $5 per hour, which yields $50.  
This overtime pay is then added to the first $500 for a total of $550 dollars.
Equivalence of Algorithms
The two algorithms of Figure 2.18 are different in structure, but they are 
equivalent in behavior.  In other words, for identical input data, they will 
produce identical results.  Which do you prefer? Why?
In this example (Figure 2.18), there is no serious reason to prefer one 
algorithm over the other.  However, in some cases, one algorithm may be 
considerably smaller, faster, simpler, or more reliable than another.  The 
interesting thing is that one embedded algorithm can be replaced by another
with the same behavior, like a spare part or a module, without changing the 
behavior of the whole program.  This “plug-in” capability of modules or 
building blocks can be very useful.
Let us consider a more complex algorithm; the extended gross pay algorithm
of Figure 2.15 is repeated on the left side of Figure 2.19 with an equivalent 
algorithm on the right.
Figure 2.19 More equivalent algorithms
Because the equivalence of these two algorithms may be less obvious, let us 
try the algorithm on the right for an input of 100 hours.  After the first 
condition is False, the pay is computed from 10 ¥ HOURS, giving $1,000.  
Then the second decision (100 > 40) adds the amount 5 ¥ (100 - 40) or 
$300.  The third decision (100 > 60) adds the amount 5 ¥ (100 -  60) or 
$200.  Finally, the output is the sum of these three amounts 
(1000 + 300 + 200) or $1500.  This output is identical to the previously 
computed output for the algorithm on the left.
Note: It is extremely important to realize that comparing outputs for one 
single input value is insufficient to determine an equivalence for all values! 
Several different values must be tried before equivalence can be proven.  
Once you encounter an input value that produces 



different outputs for both algorithms, you have proven that the two 
algorithms are not equivalent.
Testing
The fourth step of our problem solving method, Testing Strategy 
Development, leads us to define the following:

1. A strategy, and then
2. a collection of test cases for the particular problem being solved.

In the example seen in Figure 2.19, there are only a few ranges of values that
could be used to test the algorithms.  The left side of Figure 2.20 shows how 
the input values could be split into the following five distinct ranges:
• Input values less than zero and those greater than 168 indicate errors.
• Values from 0 to 40 (inclusive) belong to the regular range,
• Values above 40 and up to 60 belong to the time-and-a-half range, and
• Values above 60 to 168 belong to the double-time range.
To compare these two algorithms, we must test them with input data taken 
from each of these ranges.  Only one value from each range is required since
all values within a particular range will follow the same path through the 
algorithms (check it for yourself!).
Figure 2.20 Range of input values for testing
So, to compare these algorithms, we must take one typical test value from 
each of the ranges.  Let us try -20, 20, 50, 100 and 200.  These five values 
will exercise all possible paths in the flow charts.  Other equally good test 
values could be -50, 30, 55, 150 and 170, or -5, 5, 45, 65 and 205.  In 
addition, it is always useful to test critical values, or limit values, such as -1, 
0, 40, 41, 60, 61, 168, and 169.
The right side of Figure 2.20 displays a table of test values with the 
corresponding output of each algorithm.  This table shows identical outputs 
for all of the input values.  Verify for yourself that the two algorithms behave 
identically for the limit values.
We can now say that the algorithms in Figure 2.19 are equivalent because 
the test values were chosen carefully to cover all possible cases and the 
results of the test values come on the same for both algorithms.  It should be
realized that it is not always easy to test algorithms in this way.  In some 
algorithms, there may be hundreds or thousands of possible paths and test 
cases.  Testing on this scale will be discussed in Chapter 5.
Now that the two algorithms have been shown to be equivalent, which of 
them is better? The difference between them is not great, but most people 
feel that the second (the one on the left) is simpler 



and clearer because it consists of a long and thin series of smaller decisions. 
Algorithms with a long and thin form usually appear simpler than a “nesting” 
of short-and-fat decisions.
Because the two algorithms of Figure 2.19 are equivalent, there is a single 
description of what they both do; however, there are two different 
descriptions of how they do it.  This illustrates the difference between Step 2,
Solution Design, and Step 3, Solution Refinement.  Solution Design gives us a
description of what each sub-task must do to solve the problem, while 
Solution Refinement gives us descriptions of how each sub-task is to be 
done.  This distinction is extremely important because the definition of what 
is to be done should be made independently from how it will be done.  
Defining what generates the plan for the solution, while defining how comes 
with the application of the plan.
2.5 Programming Languages
Communicating Algorithms
The subject of this book is programming, and as you progress, you’ll write 
programs to run on a computer.  To do this, you’ll need to use a specific 
programming language.
Programming languages are notations used for communicating algorithms 
between people and computers.  There are now hundreds of such languages;
to give you a taste of these, Figures 2.20 to 2.25 show the same payroll 
algorithm (taken from Figure 2.10) expressed in six different programming 
languages, Basic, Fortran, Pascal, C, Modula-2 and Ada.
If you don’t understand all of these examples perfectly, don’t worry! These 
examples are here only to suggest similarities and differences.  All of these 
programs have a similar meaning (semantics) but differ greatly in the details 
of their form (syntax).  For example, they all input the number of hours, but 
each program specifies this input differently:  Basic uses the command 
INPUT, Fortran and Pascal use READ, C uses scanf, Ada uses Get and Modula-
2 uses ReadInt.
Basic
BASIC(Beginner’s All-Purpose Symbolic Instruction Code) was developed by 
John Kemeny at Dartmouth College around 1967.  It is a simple programming
language, designed to be easy to learn and to use.  Many versions (or 
dialects) of BASIC have appeared since and are still in use.
Figure 2.21 A simple pay program in Basic
In Basic, the numbers at the beginning of each line are reference numbers 
for use in the program.  The word REM is used to introduce a “remark”, a 
comment to help people understand the program.  Each of the programming 
languages shown here have their own way of 



marking comments.  Some versions of Basic limits the names of variables to 
a single letter, possibly followed by a single digit.  Here, we have used H for 
HOURS and P for PAY.  Also notice that the asterisk, *, is used as the symbol 
for multiplication instead of the ¥ from mathematics.  This use of the asterisk
as a symbol for multiplication is common to most programming languages.
Fortran
Fortran (FORmula TRANslation), developed by John Backus around 1957, was 
intended for engineering and scientific computations.  Revised versions of 
Fortran are still extensively used for numerical work.
Figure 2.22 A simple pay program in Fortran
In Fortran, a line that starts with an * is a comment, corresponding to a line 
that starts with REM in Basic.  Fortran also uses the * as the symbol for 
multiplication, and to refer to the keyboard and screen in the READ and 
PRINT statement.
Pascal
Pascal, created by Niklaus Wirth around 1970, was based on an international 
language called Algol 60.  It is somewhat similar to both Basic and Fortran, 
but incorporates many refinements in structure.  It was designed as a 
teaching language for beginning students.  Comments in Pascal are enclosed
in braces, { and }.
Figure 2.23 A simple pay program in Pascal
Modula-2
Modula-2 was also created by Niklaus Wirth in the late 1970s.  Not only is it 
an extension of Pascal, but a totally new language that retained Pascal’s 
good features while adding some other important features.  Its clarity, 
simplicity and unity make it suitable for first time programmers and 
programming professionals alike.  Comments in Modula-2 start with (* and 
end with *).
Figure 2.24 A simple pay program in Modula-2
C
C is a programming language created at the Bell Laboratories in the early 
1970s when low level access to the machine was considered important.  
Comments in C start with /* and end with */.
Figure 2.25 A simple pay program in C
Ada
Ada is a language created to the specifications of the U.S.  Department of 
Defense.  It is a large, complex language named after Ada Lovelace, who is 
said to have been the first programmer, and was a colleague of Charles 
Babbage as well as the daughter of Lord Byron.  Comments in Ada are 
introduced by the characters -- and continue to the end of the line.



Figure 2.26 A simple pay program in Ada
Other programming languages
Many other interesting programming languages have been developed.  Here 
are some important landmarks:
• Lisp(LISt Processor), developed by John McCarthy about 1960, is a 
language based on mathematical concepts.  Its objective is the processing of
data represented as lists of items.  It is mainly used in artificial intelligence 
applications.
• COBOL (COmmon Business Oriented Language), developed by a 
committee (CODASYL) of representatives from various computer 
manufacturers in the late 1950s, is a language particularly suited for 
business applications.  Like Fortran, COBOL has been revised several times.
• APL (A Programming Language), developed by Kenneth Iverson in 
1962, is a programming language that uses a very esoteric mathematical 
notation.
• Algol 60:  for scientific computation and for the communication of 
algorithms between computer scientists,
• GPSS and Simscript:  for the simulation of discrete events such as the 
functioning of a set of elevators or the service provided by a group of bank 
tellers,
• Logo:  for the introduction of the principles of computer programming 
to children through graphical manipulations,
• PL/I:  a large language intended to be suitable for all applications,
• Prolog:  for logic programming used, for example, to automate the 
proving of theorems,
• Simula 67:  for the simulation of networks of discrete events,
• Smalltalk:  for a style of programming where data takes an active 
rather than passive role; this is known as object programming,
• Snobol 4:  for the processing of text strings.
2.6 Life Cycles   Stages of Programming
We have mentioned that our seven-step method was related to what is 
known as the software life cycle.  Programs, like all dynamic things, are 
created, live and then ultimately die.  The three most common sizes of 
programs are presented below, with a comparison of their problems and life-
cycles.:
• Small programs, created simply for learning purposes, have a very 
simple life, as shown in Figure 2.27.  First the algorithm is created, and only 
then is it coded or translated into a programming language.  It is run and 
tested (sometimes repeatedly) on a computer.  Finally, small programs are 
used and ultimately thrown 



away.  Sometimes, they are modified and included within larger programs.
Figure 2.27 A small program

The run (or execution) of a program is shown in the last break-out 
diagram of Figure 2.27.  First the program—a task or job is entered or input.  
It is then translated or compiled into a language that the computer 
understands.  This version is loaded into memory and linked to other 
programs from a library of programs.  The complete program is then run and 
monitored for time duration, space access and errors.  It finally terminates 
with some results:  either data output or error messages.
• Medium-sized programs are larger than small programs that can still 
be created by one person.  The life cycle of medium-sized programs depends
heavily on the programmer’s style.  Individual programmers have differing 
styles, with differing consequences.  Here are a few “programming 
personalities.”:
• The Programming Pervert who spends no time on design or algorithm 
creation, but starts coding immediately.  This leads to frequent throwing 
away of code and re-starting.  The program is seldom finished in time.
• The Poor Programmer who spends little time on design and planning 
the algorithm, rushes to coding, and spends most of the time testing.  This 
programmer claims to be “90% finished” for over 90% of the time.
• The Persistent Plodder who spends more time designing and planning 
the algorithm, starts slower on the coding, requires less time for testing, and 
finishes just in time.
• The Perpetual Planner who starts very slowly, spends much time in 
design, and never gets far into coding before the deadline.
• The Perfect Programmer who spends a reasonable amount of time in 
design and creating the algorithm, which results in fast coding and testing, 
and may be finished before the deadline.
• Large programs,  or programming systems, are those programs that 
require more than a single person.  Not only are such programs usually 
complex, but the task of creating them is made more complex by the 
difficulties inherent in maintaining good communication between members 
of the programming team.  The larger the program, the larger the team and 
the greater the possibility of the communication problems.

After large programs are completed, they are frequently modified 
throughout their lives.  This modification, or maintenance, is shown in Figure 
2.28 as taking 60% of all of the time, money and effort spent on a program.  
Often, maintenance takes over 70%!



Figure 2.28 A large project
Life Cycles of large programming projects have the typical form shown 

in Figure 2.28.  The four steps in this figure are explained as follows:
1. Planning and specifying involves studying the problem, analyzing

the requirements, specifying functions (actions) and data.  It encompasses 
Steps 1 and 2 of our seven step method.

2. Designing and Developing involves decomposing the whole 
project into parts, refining the parts, coding them, and documenting 
(describing) the design.  It comprises Steps 3, 4, part of 5, and 6 of our seven
step method.

3. Testing and Evaluating involves verifying the function, testing the
performance, optimizing (improving time or space), and validating 
usefulness.  It makes up part of Step 5 of our seven step method.

4. Operating and Maintaining involves the training of users, 
operating the program, and correcting its errors.  It also includes extending 
the uses, optimizing, and modifying to transport the program to another 
computer or system.  It represents Step 7 of our seven step method.

2.7 Review   Top Ten Things to Remember
1. Problem solving with a computer is best done by following a 

method.  A seven step method was introduced to help you solve problems.  
This method can be adapted to your way of working.  It includes the 
following steps:

1.  Problem Definition
2.  Solution Design
3.  Solution Refinement
4.  Testing Strategy Development
5.  Program Coding and Testing
6.  Documentation Completion
7.  Program Maintenance
2. The Seven-Step Method is not strictly sequential.  You may find it

necessary to go back and rework previous steps as a result of a later step.  
For example, sometimes the problem definition step and solution design step
may overlap because design decisions may require more precision than has 
been provided by the problem definition.

3. Problems are solved by breaking them into subproblems, a 
method called divide and conquer.  Break-out diagrams are particularly 
useful for breaking up problems.  Their hierarchical structure reduces 
complexity by showing how sub-parts relate to the 



whole.  Break-out diagrams can be used to represent space, time, objects, 
actions, and data, as well as the stages in a program’s life-cycle.

4. Break-out diagrams can be drawn vertically or horizontally.  
Vertically, the main problem is the top-most box, followed by each level.  
Horizontally, the main problem is the left-most box with each break-out level 
placed to its right.

5. Break-out diagrams, or BODs, must possess four properties to be 
correct representations of problems and subproblems:
• Consistency:  Each break-out must be of the same kind.  If the first box 
involves time, then the whole diagram must involve time.
• Orderliness:  All the blocks at the same level cannot overlap.  Each 
block must be separate or independent.
• Refinement:  Each box on a given level must be able to fit back into the
boxes at the previous level.
• Cohesion:  All of the boxes within a breakout box must fit together.

6. Algorithms may be represented in a variety of ways.  This 
chapter discussed the following five different representations:
• Verbal algorithms use any natural language.
• Flowcharts use different shaped boxes joined by arrows indicating the 
flow of control.
• Graphs (or plots) express algorithms in a tabular structure.
• Data-flow diagram represent algorithms as “black boxes” which hide 
the tasks involved in obtaining the output from the input.
• Pseudocode uses a notation that is a mixture of mathematics, logic, 
and natural language.

7. There are many ways to modify an algorithm.  The following 
methods were covered in this chapter:
• Generalizing involves making the algorithm apply to many cases.
• Extending makes the algorithm include more cases.
• Foolproofing makes an algorithm more reliable by anticipating 
erroneous input or other difficulties.
• Embedding reuses an algorithm within another algorithm.

8. Alternative algorithms are equivalent methods of achieving a 
correct solution to a particular problem.  To prove that alternative algorithms 
are equivalent, both algorithms must be tested using the all the test cases 
that were defined in Step 4, Testing Strategy Development.  If the outputs 
are identical, then the algorithms are equivalent.  Remember, comparing the 
outputs using 



one single input value is insufficient to determine equivalent algorithms.
9. Many programming languages can be used to code an algorithm.

Some languages are more suited to certain needs than others.  For example, 
Fortran is best suited for scientific applications while Pascal is used for 
teaching purposes.

10. The seven-step method is based on the life-cycle of programs.  
For large programs, maintenance—what happens to the program after it has 
been completed and put into operation—takes as much as 60% of the life 
cycle.

2.8 Glossary

Action:  An operation performed in an algorithm or program.
Algorithm:  A finite set of well-defined rules for the solution of a problem in a 
finite number of steps; e.g., a full statement of an arithmetic procedure for 
evaluating an employee’s weekly pay.
Artificial intelligence:  A field of study in computer science that aims at 
designing systems that exhibit “intelligent” behavior.
BOD:  Break-out diagram.
Bottom-up design:  A method of design by which the definition of a system 
starts with its innermost components.
Break-out diagram:  A diagram used to represent a hierarchical 
decomposition.
Coding:  The actual writing of a computer program.
Computer:  A complex device that can input, store, process, and output 
information.
Continuous value:  A value corresponding to some physical phenomenon.
Data-flow diagram:  A diagram showing what happens to the data.
Data validation:  Verification that the data conform to some given 
constraints.
Design:  The activities preceding the actual code writing.
Detailed design:  The elaboration of an outline solution into a set of 
algorithms.
Digital value:  Numerical value.
Discrete value:  Digital value.
Divide and conquer:  A method by which a complex problem is divided in 
smaller and easier subproblems
Documentation:  An important and necessary part of any program 
development
Embedding:  The use of an already existing algorithm as part of another 
algorithm.



Execute:  Perform the actions associated with an algorithm.
Flow of control:  The sequence of actions in an algorithm or the order of 
execution of the various instructions of a program.
Flowchart:  A graphical representation of an algorithm.
Foolproofing:  Making an algorithm resistant to errors.
High-level language:  A programming language specially designed for a 
particular field of applications and not for a particular computer.
Implementation:  Practical realization and installation of an abstract design.
Low-level language:  A programming language designed for a particular 
computer and specially adapted to that computer.
Maintenance:  The last part of the life cycle of a program:  whatever happens
to the program once it has been developed, tested and released to the users.
Program:  n.  A plan for precisely defined actions to be performed by the 
computer to obtain the solution to the problem; v.  To formulate such a plan.
Program listing:  A printed list of the instructions in a program.
Programming Language:  An artificial language established for writing 
computer programs.
Pseudocode:  An informal language used to define algorithms; pseudocode is
usually a mixture of natural language and mathematical notation.
Reuse: see Embedding.
Run:  Execute.
Software:  The collection of programs needed to operate a particular 
computer hardware.
Software life cycle:  A description of the various phases of a program’s life.
Specification:  The precise and complete description of a problem to be 
solved on a computer.
Stepwise refinement:  A method by which an algorithm is developed step by 
step, each step elaborating the previously defined steps.
Structure chart:  A hierarchical diagram showing the structure of a computer 
solution to a problem.
Task:  A part of a solution to solve a problem on a computer.
Test:  An attempt to verify that a program operates in conformity with its 
specifications.
Test case:  A set of input data together with the corresponding expected 
results.
Top-down design:  A manner of designing a computer solution in which one 
starts from the global problem and decomposes it into smaller subproblems.



Trace:  The execution of an algorithm with some specific values and the 
representation of the various variables at various steps of the execution.
Variable:  An “information holder” whose contents can be used or changed 
by the program.

2.9 Problems
1. Price Break Problem
Suppose that the selling price P of something depends on the quantity Q that
is purchased.  If the quantity is less than or equal to 3 then the price is $4 for
each one, and if the quantity is over 3 then the price is $3 for each one.  For 
example, when the quantity Q = 4, the price P = 3 and the total cost T is

T = P ¥ Q = 3 ¥ 4 = $12
Graphs of the unit price P versus quantity Q are shown below.  The first 
graph describes items which are discrete or non-divisible (such as pens, 
pumpkins or puppies) and the second one describes items which are 
continuous or divisible (such as electric power or pounds of peanuts) which 
can have fractional or decimal values.
a. Represent:  Show

Draw a flowchart corresponding to this algorithm where the quantity Q 
is input and the total cost T is output.
b. Analyze:  Observe

Compute the total cost T when the quantity Q varies from 0 to 8.  Draw
this as a table with three columns, Q, P and T.  Then, draw a graph of total 
cost T versus the quantity Q in both the discrete and continuous cases.  
Observe this graph for surprising insights.

Hint:  How many items can be purchased for 12 dollars?
c. Extend:  Grow

Modify this algorithm if the price is further reduced to 2 dollars a unit 
when the quantity purchased is more than 5.  Draw the flowchart for the 
extended algorithm.  Draw also a graph of T versus Q for the discrete and 
continuous cases both shown on one graph.
d. Foolproof:  fail-safe

Modify the above extended flowchart to include any foolproofing that 
would be necessary.
e. Embed:  Repeat

Modify the above flowchart to repeat the process for as long as the 
input quantity Q is not zero.
f. Integrate:  Generalize

Redraw all of the above features onto one flowchart, and generalize all 
numeric constants to named constants P1, P2, Q1, Q2, and so on.



g. Test:  Evaluate
Select a set of test values to evaluate the final algorithm.

2. Scissors Search
Indicate which of the following verbal algorithms is better for finding an 
object, such as a pair of scissors, and explain why:
a. Look on the rightmost end of the lower shelf of the middle cabinet in 
the garage.
b. Look in the garage, in the middle cabinet, on the lower shelf, at the 
rightmost end.
3. Break-Out Problems
Create break-out diagrams describing four of the following:
a. a telephone number
b. the arrangement of five books on a shelf
c. performing some process (laundry, cooking)
d. your entire past life
e. the plan for your present day
f. the plan for the next five years
g. the layout of newspaper sections
h. anything else of interest to you.
4. Language Look
Even without knowing any programming languages, you can now make 
meaningful comparisons among the six programming languages presented in
this chapter.
a. Is multiplication represented by an asterisk (*) in all of these 
languages?
b. What different symbols are used to represent the relation “is greater 
than”?
c. What different verbs describe the output instruction?
d. When some statements (formulas, etc.) are too long to fit on a line and
continue on to another line, how is this indicated (if at all)?
e. Write a prompt “Enter hours and rate” for each language.
f. Describe any other differences and similarities that you find.
5.  More Pay
a. If the condition for overtime in the original payroll problem were 
changed, from (Hours ≤ 40) to (Hours < 40), would this change the amount 
of pay?
b. If Hours is input as a negative amount (say -50 by mistake), is the 
output correct except for its sign?
c. Modify the extended pay algorithm of Figure 2.15 to allow for triple-pay
when the hours are greater than 80.  Draw the corresponding graph and flow
chart.
6. Constant Vehicle Velocity



Suppose that a vehicle travels at a constant velocity of 40 miles an hour for 
one hour, then at 20 miles per hour for another hour and finally at 60 miles 
per hour for the last hour.  The distance D covered at constant velocity V for 
a given time T is the product D = V x T.  The total distance covered is the 
area under the V versus T curve.
a. Draw a graph of the above Velocity versus Time curve.
b. Create a flowchart to compute the distance traveled over the three 
ranges of time.
c. Draw a graph of D versus T.
7. Beware Of Improper BODs
The following BODs are not proper.  Why not? Redraw each of them in a 
better form.
8. Energy Rates
a. Not encouraging excessive use

Electrical energy rates are set in such a way that the rates decrease for
higher usage.  However, the rates should not encourage excessive use of 
energy, so the lower rates apply only to the higher energy amounts; not all 
of the energy used is at the low rate.

For example, the rate is constant $4 per unit for the first 4 units and 
drops to $3 a unit for more than 4 units.  So when 6 units are used only the 
last 2 units are at the $3 rate.  Energy is a continuous quantity; it is not used 
in discrete steps.
(i) Represent, show

Draw a graph showing the price per unit versus the number of units 
used.
(ii) Analyze, observe

Create an algorithm to determine the total cost of energy, given the 
number of units used.  Draw the graph of cost versus units.
(iii) Extend:  grow

Modify this algorithm if the price per unit drops to $2 a unit for more 
than 8 units.  reuse.  Draw the graph of cost versus units.
(iv) Foolproof, embed, and generalize

Complete this system in any way you see fit and draw the final 
algorithm in all of its detail.
(v) Test, evaluate

Select a set of test values to evaluate the final algorithm.
b. Discouraging Excessive Use

To discourage high energy use the rates could be set in such a way 
that the rates increase for higher usage.  For example, the rate is a constant 
$4 a unit for the first 4 units, and then increases to $5 a unit for those 
amounts over 4 units.

Show the algorithm for this system, analyze it, foolproof it, and 
generalize it.



Draw the graph of cost versus units again.
c. Severe Discouraging of Excessive Use

An even more severe pricing policy would be a modification that when 
the higher quantity is used then the higher rate would be charged for all of 
the energy consumed, even the amounts at the low levels.

Show the algorithm and draw the corresponding graph again.
d. Comparison of Pricing Policy

Compare the above three policies by computing the cost for using 6 
units of energy.  Then compare by putting all policies onto one graph.
9. Ideal Weight
A man should weight 106 pounds for the first 5 feet, and 7 pounds for every 
inch above that.  A woman should weigh 100 pounds for the first 5 feet, and 
6 pounds for every inch over that.
a. Create an algorithm in flowchart form that outputs the ideal weight 
when input the sex and height (feet and inches).
b. Represent this algorithm as two tables from 5 feet to 6 feet 5 inches.
c. Represent this algorithm in a graphic form, with 2 graphs on one grid.
10. Dog’s Life
An algorithm that relates a dog’s age to the corresponding human’s age 
follows:
A one year old dog is equivalent in age to a 15 year old human.  In the 
second year, the dog grows 10 human years older, and each year after that, 
it grows 5 human years.
a. Create an algorithm as a flow chart to show the human age for any 
given dog age.
b. Represent this algorithm as a table, with the dog’s age varying from 1 
to 10.
c. Represent this algorithm as a graph both discrete and continuous.
11. Sales Commission
A salesman receives a commission or rate of profit of 4% for sales up to 
$300K (where K is $1000); then the rate doubles to 8% only for the sales at 
or above this level.  Create an algorithm in flowchart form which describes 
this profit policy.  Provide also a table and graph of profit versus rate for the 
rate varying from 0 to 1000K in steps of 100K.
Another profit policy begins at a higher rate of 5% and changes to 7% for 
sales over 600K.  Create a table of this algorithm and draw it on 



the above graph.  What is the significance of the intersection of these two 
graphs?
12. Telephone Rates
The rate for use of a telephone depends on the time of call, which is 
measured as MPMs or minutes past midnight (ranging from 0 to 60 ¥ 24).  
The “day rate” from 6am to 6pm is given in dollars per minute, and the 
“night rate” as a proportion of this day rate.
If the rate is determined at the beginning of the call and remains fixed at 
that value, create an algorithm that computes the total cost for any call 
given the start time and the terminating time, both in MPMs.
If the rate can change during a call (when it lasts past the 6 o’clock times) 
then create the new algorithm to compute the cost.
Chapter 3   Algorithms
In this chapter, we study algorithms in some depth, discuss their necessary 
and desirable properties, provide examples of them and show various ways 
of representing them.
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3.1 Preview
Our problem solving method requires the development of algorithms as part 
of its third step, Solution Refinement.  To be able to complete this step, we 
need to know a lot more about algorithms.  This chapter will help us do just 
that, for we will:
• Study algorithms in some depth
• Discuss their necessary and desirable properties
• Provide many examples of algorithms, and
• Show various ways of representing algorithms.
Analgorithm is a plan for performing a sequence of actions on data to 
achieve an intended result.  To be useful, the algorithm must be precise, 
unambiguous, and specify, for all possible cases, a unique and 
finitesequence of actions that achieve a predictable result.  In addition, an 
algorithm should be applicable to a number of problems rather than to a 
single instance, have a simple structure, and be easy to use efficiently.
Algorithms can be represented in many different ways.  For any algorithm, 
there may be many different representations, some much better than others.
No one representation is best for all algorithms.  The representations 
considered in this chapter are as follows:
• Verbal:  The algorithm is expressed in words.
• Algebraic:  The algorithm is expressed mathematically with symbols 
and formulas.
• Tabular:  The algorithm is represented by one or more tables
• Hierarchical:  The algorithm is presented as a break-out diagram.
• Data-flow diagram:  The algorithm is shown as a set of boxes that show
the actions to be performed.  These boxes are linked by lines showing how 
data flows from one action to another.  This is referred to as the flow of data.
• Flowchart:  The algorithm is represented in the form of a diagram with 
action boxes linked by lines showing the order in which they are executed, or
the sequence of actions.  This is referred to as the flow of control.
• Flowblocks:  Like flowcharts, the algorithm is represented by action 
boxes.  Instead of connecting the boxes with lines, the flow of control is 
illustrated by stacking boxes on top of each other, or by nesting boxes within 
other boxes.
• Pseudocode:  The algorithm is presented as a set of instructions 
written using a mixture of natural language and mathematical notation.  The 
form of instructions in pseudocode is similar to that of programming 
languages.



Flow of data and flow of control provide the so-called black box and glass box
representations of algorithms.  The black box view, corresponding to flow of 
data, represents an action as accepting inputs and producing outputs.  This 
view hides the internal details and concentrates on what the action is.  The 
glass box view, on the other hand, corresponds to flow of control and shows 
the details of how an action is performed.  Both black box and glass box 
views can be broken out in a top-down manner.
Many examples of small algorithms are shown in this chapter.  You should 
scan all the algorithms and concentrate on those that interest you.
Although the many representations of algorithms seem overwhelming, not all
forms are equally important; the forms of lesser importance are included for 
completeness and are only described briefly.  Ultimately, you will come to 
prefer some representations over others.

3.2 What Are Algorithms?
Algorithm Definition
An algorithm is a precise plan for performing a sequence of actions to 
achieve the intended purpose.  Each action is drawn from a well-understood 
repertoire of actions on data.  Here are some examples of algorithms:
• Prepare breakfast.
• Decide how much to charge for admission to a cinema.
• Calculate the average of a group of values.
• Change a car tire
• Play a dice game
Notice that each of the above algorithms specify two things.

1. An action specified by verbs such as “prepare”, “change”, and 
“play”

2. The data to be acted on, specified by a noun or noun phrase 
such as “breakfast”, “a car tire”, and “a dice game”.
Many of these algorithms will be considered in detail later, for now it is 
sufficient to understand that algorithms are common to everyday life, and do
not necessarily involve computers.
General Properties of Algorithms
An algorithm must possess the following four properties:
• Complete:  For an algorithm to be complete, all of its actions must be 
exactly defined.  Consider the “algorithm” from Chapter 2 for getting to 
Fred’s Pizza Parlor, for example:
Directions for Getting to Fred’s Pizza Parlor
1. Take Route 116 until you come to the T-junction at Route 9.



2. Turn onto Route 9 and go about three-quarters of a mile and you will 
come to it on the left side.  You can’t miss it!

When your get a set of directions that finishes with “You can’t miss it!”,
you know you are in trouble.  For starters, in which direction should we drive 
on Route 116, north or south? If we had some knowledge of the area, it 
might be reasonable to expect us to know.  But the directions, as they stand, 
are not precise, and do not represent an algorithm!
• Unambiguous:  A set of instructions will be unambiguous if there is only
one possible way of interpreting them.  For example, even if we accept the 
directions to the pizza parlor as being precise enough, they are still 
ambiguous about the direction to turn when we reach Route 9.  We can not 
assume local knowledge because, if we knew which way to turn, we would 
know how to get to Fred’s.  The ambiguity can only be resolved by trial and 
error.  When we get to the junction of Route 116 and Route 9, we can try 
going left to see if we find the parlor.  If Fred’s is not left, it must be to the 
right.
• Deterministic:  This third property means that if the instructions are 
followed, it is certain that the desired result will always be achieved.  The 
following set of instructions does not satisfy this condition:
Algorithm for becoming a Millionaire
1. Take all your money out of the bank and change it into quarters.
2. Go to Las Vegas
3. Play the slot machines until you either win four million quarters or you 
go broke.

Clearly, this “algorithm” does not always achieve the desired result of 
becoming a millionaire.  It is most likely that you will finish with no money.  
However, you just might achieve the goal of becoming a millionaire, winning 
four million quarters.  The point is that we cannot be certain what the result 
will be.  This makes the set of instructions non-deterministic, and thus does 
not constitute an algorithm.
• Finite:  The fourth requirement means that the instructions must 
terminate after a limited number of steps.  The “algorithm” for becoming a 
millionaire fails this criterion too.  It is possible that you will never reach 
either the stage of having four million quarters or of going broke.  In other 
words, if you follow the instructions, you might end up playing the slot 
machines forever.

The finite requirement not only means termination after a finite 
number of steps, it also means that the instructions should use a finite 
number of variables to achieve the desired result.



Desirable Attributes for Algorithms
Although an algorithm may satisfy the criteria of the previous section by 
being precise, unambiguous, deterministic, and finite, it still may not be 
suitable for use as a computer solution to a problem.  The basic desirable 
attributes that an algorithm should meet are explained below.
• Generality:  An algorithm should solve a class of problems, not just one
problem.  For example, an algorithm to calculate the average of four values 
is not as generally useful as one that calculates the average of an arbitrary 
number of values.

Among its other failures, our “algorithm” to get to Fred’s Pizza Parlor 
lacks generality for it does not help us get to all pizza parlors.  For example, 
it would not get us to Romano’s Pizza Palace.
• Good Structure:  This attribute applies to the construction of the 
algorithm.  A well-structured algorithm should be created using good building
blocks that make it easy to...
• Explain,
• Understand,
• Test, and
• Modify it.

The blocks, from which the algorithm is constructed, should be 
interconnected in such a way that one of them can be easily replaced with a 
better version to improve the whole algorithm, without having to rebuild it.
• Efficiency:  an algorithm’s speed of operation is often an important 
property, as is its size or compactness.  Initially, these attributes are not 
important concerns.  First, we must create well-structured algorithms that 
carry out the desired task under all conditions.  Then, and only then, do we 
improve them with efficiency as an objective.
• Ease of Use:  This property describes the convenience and ease with 
which users can apply the algorithm to their data.  Sometimes what makes 
an algorithm easy to understand for the user, also makes it difficult to design
for the designer (and vice versa).
To see an example of elegance, see Figure 3.21.
• Elegance:  This property is difficult to define, but it appears to be 
connected with the qualities of harmony, balance, economy of structure and 
contrast, whose contribution to beauty in the arts is prized.  Also, as with the 
arts, we seem to be able to “know beauty when we see it” in algorithms.  
Sometimes the term beauty is used for this attribute of an algorithm.
Other desirable properties, such as robustness (resistance to failure when 
presented with invalid data) and economy (cost-effectiveness), 



will only be touched upon in this chapter.  Not because these properties are 
unimportant, but because the basic attributes of an algorithm should be 
understood first.

3.3 Different Algorithm Representations
Algorithms may be specified in many forms—these are called representations
or notations.  The representation of an algorithm is extremely important 
because it must rapidly convey the algorithm’s meaning with the least 
amount of effort by the reader.  No one representation is suitable for all 
algorithms.  The best representation for one algorithm may be the worst for 
another.
A representation should serve as a mental beast of burden.  It serves to 
relieve the brain of unnecessary work by reducing the perceived complexity 
of what is being described.  Since we all have a limit to the amount of 
complexity we can handle, a good representation sets us free to concentrate 
on more advanced problems.
The significance of proper representation becomes obvious when you 
consider the many ways that numbers may be represented.  For example, 
the following forms all refer to the year 1984:
• 1984:  Hindu-Arabic notation, base 10
• Nineteen eighty four:  English words
• MCMLXXXIV:  Roman numerals
• 11111000000:  Binary, base 2
• 3700:  Octal, base 8
• ‘84:  Shortened form
Each of these forms is useful for a specific purpose.  The binary form is used 
by computers and the shortened form (‘84) is useful when writing a check 
and so on.  For some purposes, certain forms are much better than others.  
For example, the Hindu-Arabic numerals are a much better representation for
arithmetic than Roman numerals, as the following example attests.
63
¥7 versus LXIII ¥ VII = L ¥ V + L + L + X ¥ V + X + X + V + I+ I + V +
I + I + V + I + I
441 = L + L + L + L + L + L + L + X + X + X + X + X + X + X + 
V + V + V + I + I + I + I + I + I

= C + C + C + L + L + X + X + X + V + V + I
= C + C + C + C + X + X + X + X + I
= CDXLI

Before we look down on the Romans for their number system, we must 
remember that their numerals were not developed for arithmetic.  When 
they came into existence, almost the only use for numbers was counting and
the Roman numerals I, V and X were 



very simple to notch on tally sticks.  Carpenters to this day still form these 
numerals with their axes when they number the beams and timbers they 
have fashioned.  The other Roman numerals for larger numbers, M, C, D and 
L, did not have much place in early counting.  They are thought to have 
evolved from these counting marks.
Normally, for arithmetic purposes, there is one standard form or notation 
(Hindu-Arabic, base 10 form).  Unfortunately, in computing, there is no such 
standard when it comes to representing algorithms.
Selecting the proper representation for algorithms is not a simple task for 
there are no guidelines which we can follow.  The only way to determine the 
best representation is to try at least two forms and see which one you like 
the best.  After a few tries, you’ll find a representation that you prefer, or 
you’ll have developed your own by combining a couple of the 
representations introduced here.  In any case, you should develop your 
algorithms using the representation that best fits your style.
Without a good representation, it is very difficult to express an algorithm.  
For example, we probably know the algorithm for making change for 12 
cents when given a dollar.  We would add from the 12 cents up to the dollar.  
For our specific example, we would first give 3 pennies (to make 15 cents), 
then a dime (to make 25 cents), and then 3 quarters to finally add up to the 
dollar tendered.
Although we know how to add up to a dollar from 12 cents without the help 
of a cash register, we would have difficulty describing how to make change 
for an arbitrary amount.  To describe this algorithm precisely to a computer 
would be even more difficult for us.  The point is that knowing how to do 
something is very different from being able to describe precisely how to do 
it! To use the words of St.  Augustine,
“If no one asks me, I know what it is.  If I wish to explain it to he who asks, I 
do not know.”
If we possess a way of representing algorithms, then we will be able to 
express ourselves.  In fact, representation can be viewed as a powerful tool 
that helps us think of things that we would have not have been able to think 
of without it.
We must also realize that there may be many ways of creating an algorithm 
that makes change.  This might help us find a method that is simpler in some
ways than the one we usually use.  This will lead us to the change-making 
algorithm that we will see later in this chapter.  It is a convenient algorithm 
for us to communicate to a computer, but at the same time, its an algorithm 
that we would not want to used for ourselves.  In this book, we will meet 
about half a 



dozen different algorithms that accomplish this same change-making task.
In the rest of the chapter we will consider many algorithm representations, 
and for each representation, we will give several example algorithms.  Look 
briefly at all the examples, but consider in detail only a few that are of 
interest to you.  These algorithms are meant to communicate to people.  
Later some may be modified to run on machines.  Please realize that it is not 
required that you understand all the algorithms.  On the other hand, you 
should be able to follow them, for that is precisely what computers do.
Verbal Representations
The following figures (3.1 to 3.5) present some very common examples of 
algorithms.  They appear here in a simple verbal form (representation) and 
will be transformed into other forms later.  Remember, For any particular 
algorithm, one representation may be much better than another; therefore, it
is worth getting familiar with a number of alternative forms.
The algorithm Charge admission, of Figure 3.1, specifies an admission charge
that depends on the age of the person being admitted; it consists of a 
procedure to determine the charge and some examples showing the results 
of applying the procedure.
Figure 3.1 First verbal algorithm   Charge admission

Kids under 12 pay $2
All others pay $3
For example:

12 year olds pay $3.
21 year olds pay $3.
2 year olds pay $2.

Figure 3.2 shows another algorithm expressed in a verbal form which 
specifies a method to determine which years are leap years.  It is usually 
sufficient to check if 4 divides evenly into the year, but if the year marks a 
century, then the algorithm is more complex.  For example, the year 1900 
was not a leap year, while the year 2000 will be a leap year.
Figure 3.2 Second verbal algorithm   Leap Year

A leap year is divisible by 4 but, if it is divisible by 100, then it is not a 
leap year, unless it is also divisible by 400.

For example:
1984 was a leap year.
1900 was not a leap year.
2000 will be a leap year.
2100 will not be a leap year.



Our third verbal algorithm example, Dice Game (Figure 3.3), specifies how a 
simple game is played, using two dice having one to six dots on each side.
Figure 3.3 Third verbal algorithm   Dice Game

Two dice are thrown.  If their sum is 7 or 11, you win, and if the sum is 
2, 3 or 12, you lose.  If neither rolls come up, remember the sum, the “point 
count”, and keep throwing until either:

the sum equals the point count, or
the sum equals 7 and you lose..

For example, consider these sequences:
7 you win
6, 7 you lose
4, 2, 11, 3, 4 you win
9, 3, 4, 12, 2, 8, 3, 7 you lose

Figure 3.4 shows a fourth example, Ideal weight, which describes one view of
the relationship between height and weight.
Figure 3.4 A fourth verbal algorithm   Ideal Weight

A man should weigh 106 pounds for the first 5 feet of height plus 7 
pounds for every inch above that; a woman should weigh 100 pounds for the
first 5 feet of height plus 6 pounds for every inch above that.

For example:
A woman 5ft.  10in tall should weigh 100 + 6 x10 = 160lbs.
A man 6ft.  0in.  tall should weigh 106 + 7 x 12 = 190lbs.

Our final example for the verbal representation of algorithms, ISBN, shown in
Figure 3.5, describes the way to determine the last digit for the International 
Standard Book Number.  Most recent books have on their back covers a 
special ten-digit ISBN such as:
0-06-500871-5 (the hyphens are not important)
The first digit, 0, represents the book’s area of origin.  0 means that it was 
published in an English-speaking country.  The second group represents the 
publisher; 06 means that it was published by Harper Collins.  The third group,
500871, represents the book’s title and is assigned by the publisher.  The last
digit, 5, is a check digit that is computed from the nine preceding digits as 
shown in the algorithm.
Figure 3.5 A verbal algorithm   ISBN Checksum Code

Find the sum of:
the first digit and
two times the second digit and
three times the third digit and
...so on to ...
nine times the ninth digit.



Divide this sum by 11 and find the remainder.
If the remainder is less than 10, then the remainder becomes the 

checksum, otherwise the checksum is the character ‘X’.
For example:

0-06-500871 has the checksum 5.
0-387-96939 has the checksum X.

For example, the “weighted sum” of the first number in Figure 3.5 is...
1 ¥ 0 + 2 ¥ 0 + 3 ¥ 6 + 4 ¥ 5 + 5 ¥ 0 + 6 ¥ 0 + 7 ¥ 8 + 8 ¥ 7 + 9 ¥ 1 = 159
Dividing this sum by 11 yields a remainder of 5, which is the checksum.  This
code is used for error checking when ordering a book, for example.  If the 
computed checksum does not equal the last digit of the ISBN, then an error 
has been made in copying this book number.  This is a very useful error 
detecting method because it detects the most common copying error, that of
transposing adjacent digits.
Algebraic Representations (formulas and expressions)
Many algorithms, especially in mathematics and engineering, are expressed 
in a mathematical form as a formula or algebraic expression.  This is often a 
concise form, convenient for computers.  Some examples of this algebraic 
form follow.  Again, look quickly at all of these, but concentrate on just a few. 
The first examples are simple and become more and more complex as you 
go on.
The algorithm Charge Admission, that we saw earlier in a verbal 
representation (Figure 3.1), is redefined in Figure 3.6.  This example 
computes the total admission charged, given the number of adults A and the 
number of kids K.
Figure 3.6 A formula algorithm version of Charge Admission

C = 3 x A + 2 x K where
A is the number of Adults
K is the number of Kids

For example:
For 2 Adults and 3 Kids
C= 3 x A + 2 x K = 3 x 2 + 2 x 3 = $12

As a second example of a formula algorithm, let’s look at Time Conversion in 
Figure 3.7.  This is an algorithm for converting days, hours, minutes, and 
seconds into seconds.  This conversion is done in two ways:  the first way 
seems natural, while the second way is derived from the first by factoring out
common terms, which results in half as many multiplication operations.  
Check that the second way produces the same result for the example shown.
Figure 3.7 A second formula algorithm   Time conversion

T = S + 60 x M + 60 x 60 x H + 24 x 60 x 60 x D



or alternatively
T = S + 60 x (M + 60 x (H + 24 x D)), where

S is the number of Seconds,
M is the number of Minutes,
H is the number of Hours,
D is the number of Days.

For example:
For 1 day, 2 hours, 3 minutes, 4 seconds

T = 4 + 60 x 3 + 60 x 60 x 2 + 24 x 60 x 60
= 93 784 seconds

Another conversion algorithm is shown in Figure 3.8.  Temperature 
Conversion shows two alternative pairs of formulas for converting between 
Celsius and Fahrenheit temperatures.  You may wish to check that -40° 
Celsius converts to -40° Fahrenheit and back.
The alternative formulas present another way of performing the conversions.
These alternative formulas also present an elegant symmetry that avoids the
necessity of remembering when to add or subtract the 32.
Figure 3.8 A third formula algorithm   Temperature Conversion

C =  x (F - 32)
F =  x C + 32

or alternatively
C = ( x (F + 40)) - 40
F = ( x (C + 40)) - 40
For example:

For F = 212°F
C =  x (212 - 32) = 100°C

For C = 20°C
F =  x 20 + 32 = 68°F

The next example, Figure 3.9, shows two different algorithms that compute 
the square of any positive integer number N.  In the first formula, the 
number N is added to itself N times.  Alternatively, in the second formula, the
square of an integer N is determined by summing the first N odd integers.  
This Square example illustrates again that there may be many ways to do 
the same thing.
Figure 3.9 A Square formula algorithm

S = N + N + N +.  ..  + N (N times)
or alternatively

S = 1 + 3 + 5 + 7 +.  ..  + (2N - 1)
For example, if we denote the Square of 7 as Square(7):

Square(7) = 7 + 7 +7 + 7 +7 + 7 + 7 = 49
Square(7) = 1 + 3 +5 + 7 +9 + 11 + 13 = 49



Statistical measures like mean and variance are shown as formulas in Figure 
3.10.  The mean of N given values, M, is found by summing all the values 
and dividing this sum by N.  For example, here is the Mean of the 4 values 
10, 20, 30 and 40:
M = (10 + 20 + 30 + 40) / 4 = 25
For other methods of finding the variance, see Problem 18 in Section 3.8 and 
see Chapter 8.
The variance, V, is a measure of the amount of variation of the values about 
this mean value.  It is computed by taking the average of the square of the 
differences of the values from the mean, M, as shown in Figure 3.10.
Figure 3.10 A Mean and Variance formula algorithm

M = (X1 + X2 + X3 +.  ..  + XN) / N
V = [(X1 – M)2+ (X2 – M)2 +.  ..  + (XN – M)2] / N
For example, for the four values 10, 20, 30, 40:

M = (10 + 20 + 30 + 40) / 4 = 25
V = [(10 – 25)2 + (20 – 25)2 + (30 – 25)2 + (40 – 25)2] / 4

= 125
The Factorial of a number N, denoted by N!, may be computed by the 
algorithm shown in Figure 3.11.  The factorial N! is computed as the product 
of N with all the positive numbers less than N.  For example:

7! = 7 ¥ 6 ¥ 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1 =  5 040
10! = 10 ¥ 9 ¥ 8 ¥ 7 ¥ 6 ¥ 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1
= 10 ¥ 9 ¥ 8 ¥ 7!
= 362 800

Notice that as N increases, Factorial N increases very quickly.
Figure 3.11 A Factorial formula algorithm

N! = N x (N – 1) x (N – 2) x.  ..  x 2 x 1
For example:

5! = 5 x 4 x 3 x 2 x 1 = 120
Figure 3.12 shows a formula to compute the trigonometric sine of an angle X 
expressed in radians.  This sine formula refers to the factorial formula shown 
in Figure 3.11.
Only a few terms of the series are required since their values decrease very 
quickly (because of the rapidly increasing value of the factorial in the 
denominator).  If the value of X is 1, then the first two terms of this series 
yield this approximation:
SIN(X) = X - X3/(3 ¥ 2 ¥ 1) = 1 – 1/6 = 5/6 = 0.83333
Comparing this approximate value of 0.83333 to the actual value of 0.842 
shows that using only two terms still yields a good approximation.  The value
of the next term in the series is 0.00833:  if we add this, we get 0.8416, a 
very close approximation.  The more 



terms of the series we use for our computation, the more accurate the 
approximation we obtain.
Figure 3.12 A Sine formula algorithm

SIN(X) = X – X3/3! + X5/5! – X7/7! – …
For example:

SIN(1) = 1 - 1/(3 x 2 x 1) + 1 /(5 x 4 x 3 x 2 x 1)
= 1 – 1/6 + 1/120 – …
= 0.8416

Figure 3.13 shows a formula to convert binary numbers (base 2) into decimal
numbers (base 10).  For example, the binary number 11001 can be 
converted to the decimal number 25:
(11001)2 = 24 ¥ 1 +  23 ¥ 1 + 22 ¥ 0 + 21 ¥ 0 + 20 ¥ 1

= 16 + 8 + 0 + 0 + 1 = 25
This process can be generalized to any other base B by replacing the base 
value of 2 by B.  For example, this algorithm can convert octal to decimal 
numbers simply by changing the base from 2 to 8.
Figure 3.13 A Base conversion formula algorithm

Binary to Decimal Conversion
(Bn..  .B3B2B1B0)2 = 2nBn + 2n-1Bn-1 +...  + 22 B2 + 2B1 + B0

For example:
(110)2 = 4 + 2 + 0 = 6
(1101)2 = 8 + 4 + 0 + 1 = 13
(1000000)2= 26 x 1 = 64

Tabular Representations (tables, arrays, and matrices)
Tables are rectangular grids which store values.  They are often convenient 
for representing algorithms.  Tables of various kinds are encountered in 
mathematics (matrices), in business (decision tables or spreadsheets), in 
logic (truth tables) and in computing (arrays).
An algorithm for computing the number of days in a month is shown as a 
table in Figure 3.14.  Here the months are represented by integers from 1 to 
12.  Corresponding to each integer is a number indicating the number of 
days in that month.
In the square for February there is a break-out diagram because, depending 
on whether or not it’s a leap year, February may consist of 28 (normal year) 
or 29 (leap year) days.  By using a break-out diagram to illustrate these two 
possible values, an important point is presented:  one algorithm (a sub-
algorithm) may be used within another algorithm.
Notice that almost every second month has 31 days; the exceptions occur in 
July and August.  This came about because Julius Caesar could not stand that
the month named after him had fewer days than the month named after 
Caesar Augustus.



Figure 3.14 First “table” algorithm   Days in a month
For more on the property of completeness, consult Section 3.2 under General
Properties of Algorithms.
The Charge Admission algorithm, which we have encountered twice 
previously in Figures 3.1 and 3.6, is shown as a table in Figure 3.15.  In this 
algorithm, admission is $3 per Adult and $2 per Kid, some frequent 
combinations of Adults and Kids are computed once and then can be referred
to later to save further computation.  Although the property of completeness 
is not satisfied (not all combinations are shown), this table is still convenient 
and useful since it specifies the charge for the most common combinations 
of Adults and Kids.
Figure 3.15 Second “table” algorithm   Charge admission
As an alternative, the two-dimensional version of this algorithm—with the 
same combinations, is shown at the right of Figure 3.15.  In this table, for 
example, the Charge corresponding to 2 Adults and 1 Kid can be determined 
by moving along row 2, and down column 1.  The point where the row and 
column intersect (Charge = 8) indicates the amount to charge for this 
combination.
The next algorithm, Majority, shown in Figure 3.16, compares three variables 
A, B, and C.  This algorithm determines which of two values (0 or 1) appears 
the majority of the time.  For example, if A = 1, B = 0 and C = 1, then the 
Majority value is 1, as indicated in the third from last row.  In Logic, similar 
tables are called truth tables.
Figure 3.16 Third “table” algorithm   Majority
Decision tables are alternative forms of truth tables.  They are used in many 
business applications that involve complex combinations of decisions 
because decision tables provide an easy way to check for completeness and 
consistency, since all combinations are listed.
A decision table for Majority is shown at the right of Figure 3.16.  This table is
smaller than the table on the left of Figure 3.16, because it has only 6 rules 
(combinations of the conditions A, B, C).  For example, consider the first 
column (rule); if A and B conditions are both 0, then regardless of condition C
the Majority action is 0.  Often the conditions are labeled with values of Yes 
and No, or True and False instead of 0 and 1.
Indices refer to a position in a table.  For example, the tables corresponding 
to Days in a Month and Leap, shown in Figure 3.14, only have one index each
(Month and Leap Year).  The table for Charge Admission, shown in Figure 
3.15, has two indices labeled Adults and Kids.  The tables for Majority in 
Figure 3.16 have three indices labeled A, B, C.  Indices are also called 
subscripts.



Note: In the decision table in Figure 3.16, the “?” indicates a value that has 
no effect on the outcome and, therefore, that does not need to be examined.

3.4 Data-Flow Diagrams
Black Boxes vs. Glass Boxes
Algorithms can be considered from two points of view, both involving flows:  
data flow and control flow.  Data flow emphasizes the flow of data between 
the actions, while control flow emphasizes the sequence of actions.
In Data-Flow Diagrams (or DFDs), the actions that constitute the algorithms 
are represented as black boxes and the lines show data flow between them.  
The temporal sequence of actions is not represented.  This view is in direct 
contrast with flowcharts, which emphasize the sequence of actions.  Data-
flow diagrams describe mainly the function of an algorithm:  what it does, 
rather than how it does it.
Figure 3.17 shows this difference with a Divide algorithm that divides a 
Numerator by a Denominator and produces a Quotient and a Remainder.  
The data-flow diagram is at the left of the figure and provides no indication 
as to how the Divide operation is done.  This diagram only shows the 
following three things:
• What the Divide algorithm does,
• What Divide takes as input, and
• What Divide produces, or outputs.
On the right side of Figure 3.17, a flowchart for the same Divide operation 
shows how the division is done, hence the name “glass box”.
Examples of the “black box” view are shown later in this section.
A Black box describes a system that accepts inputs, and produces outputs, 
while hiding the internal details of the transformation.  This view shows what 
is being done by each box and how the boxes interconnect.  It provides a 
higher level “bird’s eye” view, as the low level details are not shown.  This is 
the “black box” view provided by data-flow diagrams which use arrows to 
indicate the flow of data in and out of each box.
Examples of the “glass box” view are shown in section 3.5, using three 
different representations:  flowcharts, flowblocks and pseudocode.
A Glass box describes the inner details of a system.  This view shows how 
things are done within a box.  It provides a lower level “worm’s eye” view.  
This view is represented by flowcharts and flowblocks, 



with arrowhead lines showing the flow of control between various boxes.
Figure 3.17 Black box vs. glass box
It is important to understand that these two views, black box and glass box, 
are complementary, and that each has its appropriate place.  The black 
boxes are generally used first to give an initial, high-level specification of a 
system.  The black boxes prevent us from filling our minds with details too 
early.  The glass boxes are used, at lower levels, to deal with the details.
Choosing the right type of boxes to use is not simple.  Sometimes it is very 
difficult to put an algorithm into one form, yet very easy to put it into the 
other form.  Sometimes the black box data flow method is best; at other 
times, the glass box control flow method is best.  Sometimes we need to 
switch back and forth between these two views.
Top-down break up of systems into boxes is an important process.  The larger
boxes (usually black boxes) are broken-out into collections of smaller boxes.  
The smaller boxes, in turn, are broken down further until all boxes are 
sufficiently simple and can be transformed into glass boxes.  Much more will 
be done with these two views later.
Black boxes hold a special significance.  Each black box may be viewed as a 
sub-algorithm with input arrows representing values “passed in” and output 
arrows representing some result “passed out”.  This allows us to consider 
some important concepts without having to get into great detail.  For now, 
the boxes simply allow us to break out and manage the complexity of 
systems.  Later, we will explore important concepts like sub-algorithms
General Data-Flow Diagrams
Let’s now concentrate on the black box approach and look at examples of 
data-flow diagrams.
Data Types describe the kind of data items that are considered:  a data type 
encompasses values and the operations that can be applied to those values. 
It is not sufficient to say that the data are numbers, since in computer 
science, a big distinction is made between Integers (or whole numbers) and 
Real Numbers (those with a decimal point).  The main reason for the 
distinction is that Integers and Real Numbers are represented differently by 
computers.  We can say that Integers arise from counting, while Real 
Numbers come from measuring.
Real Numbers usually arise from measuring and are normally expressed with 
a decimal point such as 3.1415, -2.5 and 0.7.  Sometimes, when the values 
are either very large or very small, they 



are expressed in a scientific or exponential notation such as 3.2E12, which 
means 3.2 ¥ 1012 (which is 32 000). 
The operations on Real Numbers are the four arithmetic operations shown in 
Figure 3.18:  addition, subtraction, multiplication and division.  Each 
operation is applied to Value1 and Value2 and produces a Result.
In Figure 3.18, the operations are considered at a high level to indicate what 
they do and not how they do it.  Later we will consider how division is really 
done.  For now, we will use the division operator to create larger functions.  
Remember, it often helps to hide details!
Figure 3.18 Real Number data flow components
Formulas, or arithmetic expressions, specify how numbers are grouped and 
manipulated.  Data-flow diagrams present this information graphically.  For 
example, Figure 3.19 presents a data-flow diagram for the expression A + B 
¥ C.
Figure 3.19 Formula data-flow diagram
In Figure 3.19, the arithmetic operators addition and multiplication, are 
shown as black box operators with two inputs and one output each.  The two 
values at the inputs are transformed by the operator into one value at the 
output.  The “flow” of these values leads to one resulting output value, at the
bottom of this diagram.
The precedence of an operator is a common convention that helps specify 
the order in which the operations of an expression are to be performed.  This 
corresponds to the rule that we learned in high-school:  that multiplication 
and division are done before addition and subtraction.
For example, the formula 1 + 2 ¥ 3 should be evaluated as 1 + (2 ¥ 3) = 7 
instead of (1 + 2) ¥ 3 = 9 because multiplication has precedence over 
addition.  Parentheses can be used in an expression to show the order of 
evaluation, as we did above.
Another way of describing precedence is to say that multiplication and 
division bind their operands more tightly than addition and subtraction.  This 
idea of “binding” of operands is clearly shown in Figure 3.19.  When 
multiplication and division occur together in an expression.  It is evaluated 
from left to right as shown in Figure 3.20.
Figure 3.20 Temperature conversion data-flow diagram
Figure 3.20 shows the data-flow diagrams for the conversion of temperatures
between Fahrenheit and Celsius scales.  The diagram on the left of Figure 
3.20 shows the conversion of 20°C to 68°F, and on the right of the same 
figure, the conversion of 68°F back to 19.9999…°C! In other words, we did 
not finish up with what we 



started with! This illustrates a problem of possible inaccuracy when dealing 
with repeating decimals, such as 5/9 (0.55555555555…).  Because it is 
impossible to store an infinite number of decimals in a computer, only 
approximations to such numbers can be stored and used, which leads to a 
loss of precision in the computations.
Polynomials are formulas (arithmetic expressions) that involve a single 
variable, say X, taken to certain powers and multiplied by various coefficients
as in the following example:
Y = A + B ¥ X + C ¥ X2 + D ¥ X3 + E ¥ X4
Such polynomials can usually be factored to yield a formula which, in the 
case of our example above, will look like this:
Y = A + X ¥ (B + X ¥ (C + X ¥ (D + X ¥ E)))
The first way of writing the polynomial may seem like a natural way to think 
about the evaluation of the formula, but it involves much more multiplication
than the second way, which only requires four instances of multiplication.  
The difference is shown in the two data-flow diagrams of Figure 3.21.  The 
second method, shown on the left, has a more “elegant” data flow structure.
Figure 3.21 Polynomial data-flow diagram
Integer Data-Flow Diagrams
Integers are whole numbers (such as 7, 0, -32, 365, 12 345), which usually 
arise from counting.  Integers are represented differently from Real Numbers 
in computers and, although they have similar arithmetic operations, these 
operations are often handled differently.  The four fundamental functions on 
Integer numbers are shown as data-flow diagrams in Figure 3.22.
Figure 3.22 Integer components
In particular, you should note that the division of Integers is different from 
the division of Real Numbers.  Dividing an Integer N by another Integer D 
yields an Integer quotient Q and an Integer remainder R:  for example, 
dividing 23 by 7 yields a quotient of 3 and a remainder of 2.  There are two 
outputs (Q and R) from Integer division, whereas there is only one output 
from the division of Real Numbers.  In the case of the division of 23 by 7, the 
Real Number operation yields this never-ending, repeating decimal:
23/7 = 3.285 714 285 714 285 714 285 714...
The conversion of any number of grams to the corresponding number of 
kilograms, hectograms, decagrams and grams, illustrates the use of Integer 
Divide data flow boxes.  The various conversion factors are shown in Figure 
3.23.
Figure 3.23 Conversion factors
1 decagram = 10 grams
1 hectogram = 10 decagrams = 100 grams



1 kilogram = 10 hectograms = 1000 grams
Because the metric system has the same base as our decimal counting 
system (base ten), we are able to make conversions between these 
measures in our head without difficulty.  However, to make these conversions
on a computer, we need an algorithm.  Figures 3.24 to 3.26 provide three 
different ways of expressing something that we can compute in our heads, as
an algorithm.
Figure 3.24 Convert grams   first conversion method
We’ll illustrate three different ways of performing the conversion.  First, 
consider the conversion method shown in Figure 3.24, where values are 
shown for one typical example of 2403 grams converted to 2 kilograms, 4 
hectograms, 0 decagrams and 3 grams.  These typical values help make the 
result concrete; they do not prove anything.
The first Divide block divides the number of grams by 100 (100 grams = 1 
hectogram), yielding a quotient of hectograms and a remainder of grams.  
The second Divide, at the left, divides the hectograms by 10 (10 hectograms 
= 1 kilogram), yielding a quotient of kilograms and a remainder of 
hectograms.  The third Divide, at the right, divides the number of grams in 
the remainder from the first division by 10 (10 grams = 1 decagram), 
yielding a quotient of decagrams and a remainder of grams.
Figure 3.25 Convert grams   second conversion method
The second conversion method, Figure 3.25, begins by dividing the number 
of grams by 10, yielding a quotient of 240 decagrams and a remainder of 3 
grams.  Next the 240 decagrams are divided by 10 again (10 decagrams = 1 
hectogram) yielding a quotient of hectograms (24) and a remainder of 
decagrams (0).  Finally the 24 hectograms are divided by 10 (10 hectograms 
= 1 kilogram), yielding a quotient of kilograms (2) and a remainder of 
hectograms (4).
Figure 3.26 Convert grams   third conversion method
Figure 3.26 shows yet another conversion method that works in the opposite 
direction from Figure 3.25.
First, it divides the number of grams by 1000, yielding a quotient of 2 
kilograms and a remainder of 403 grams.  This number of grams is then 
divided by 100, yielding a quotient of 4 hectograms and a remainder of 3 
grams.  For this example, the task is already complete at this point and it is 
tempting to stop now.  However, in general, we need to proceed further.  The
number of grams is divided by 10 yielding a quotient of 0 decagrams and a 
remainder of 3 grams.
Oftentimes, it is possible to solve a problem in many ways.  Our rather 
simple conversion problem had three different solutions.  Larger problems 
may have many more solutions.  None of the above 



solutions seem much better than the others for they all involve three 
divisions.  In some problems; however, the solutions may be very different 
and some will be highly preferred over others.
Logical Data-Flow Diagrams
George Boole made significant contributions to the field of logic around 
1850, showing in particular how it was possible to combine logical 
relationships into expressions just as we can combine Integer or Real 
Number values into expressions.  Such “logical” expressions are called 
Boolean expressions.  Logical quantities (constants, variables and 
expressions) are used very often in programming.
Propositions, or logical statements, can have one of only two values:  either 
True or False, often abbreviated to T and F.  Here are a few examples of some
propositions:
2 + 2 = 4 (True)
7 is even (False)
It is raining here now (True)
Predicates are logical functions that, for given values of their arguments, 
become propositions with values True or False.  Here are a few examples of 
predicates:
(X < 10):

True when X is 7;
False when X is 11.

(X = Y):
True when X=7 and Y=7;
False when X=7 and Y = 11.

(It is raining there):
Value depends on what “there” is referring to.

Symbolic logic is the study of logic based on the use of symbols.  As 
arithmetic possesses operators (addition, subtraction, multiplication and 
division), symbolic logic has its own set of operators, which include AND, OR 
and NOT as shown in Figure 3.27.
Figure 3.27 Logic components
Truth tables for each operation (bottom of Figure 3.27) describe the output 
behavior for all given combinations of input values.  These truth tables can 
be viewed and used as tiny arithmetic operation tables, somewhat like 
multiplication tables.
The AND operator, applied to two propositions A and B, has output True when
both A and B are True.  Otherwise its output is False.  For example:
(2 + 2 = 4) AND (7 is even) is False.
The OR operator, applied to two propositions P and Q, has output True when 
either P or Q or both are True.  It only has the output False if both P and Q are
False.  For example:



(2 + 2 = 4) OR (7 is even) is True.
The NOT operator (or negative), applied to a False proposition, gives True, 
and NOT, applied to a True proposition, gives False.  For instance:
NOT (7 is even) is True.
Logical operators can be combined to build logical expressions or new logical
functions as shown in Figures 3.28 and 3.29.
Figure 3.28 NOR logical operator
Figure 3.28 shows the complement (NOT) of the OR of propositions K and L, 
and the corresponding truth table.  Notice that the resulting output M is True 
only when neither K nor L is true; this is called the NOR operator.
Complex logical expressions that involve the negation operator NOT can 
often be simplified by the application of DeMorgan’s Laws.  DeMorgan’s First 
Law has this form:
NOT(P OR Q) = NOT(P) AND NOT(Q)
This states that, to negate the OR of two propositions, you negate each 
proposition and change the OR to an AND.  Consider this statement:
I will go out, if it is not raining or freezing.
This is equivalent to
I will go out, if it is not raining and not freezing.
As another example of DeMorgan’s First Law, let’s take the negative of an 
expression involving a baseball game with inning I and scores S1 and S2:
NOT {(I £ 9) OR (S1 = S2)}
This is equivalent to
(I > 9) AND (S1 ≠ S2)
Data-flow diagrams of DeMorgan’s First Law are shown in Figure 3.29.
Figure 3.29 DeMorgan’s first law
A proof of the first law is given at the right of Figure 3.29; the logical 
expressions corresponding to the diagrams at the left and right are the same 
in all four possible cases.
DeMorgan’s Second Law is:
NOT(P AND Q) = NOT(P) OR NOT(Q)
This law will be further discussed in Chapter 5.
Data Flow Black Boxes
In data-flow diagrams, all actions to be performed on data are represented 
by black box components.  Some of these components are shown in Figure 
3.30 and will be used in the following chapters.  Some of these components 
are directly available in programming 



languages, others can easily be created by programmers and used to create 
yet larger components and systems.
In Figure 3.30, notice the differing numbers of data inputs and outputs.  
Remember that the data flow view is concerned with what is done, not how it
is done.  The emphasis is on the use and reuse of these components.  But, 
we first need to know what they do, not how.
Also notice that the first two components in this figure (Square and Days) 
have a single input (arrow pointing in) and single output (arrow leaving ).  
The other examples have more inputs and outputs.
Figure 3.30 Data flow components
The data flow components in Figure 3.30 are explained as follows:
• Square:  The first component in Figure 3.30 is a simple example shown 
with an input value of 7 “flowing” into the box, and the resulting data value 
of 49 being output.  It does not indicate how the square of X was computed 
within the box.  It could have been done by X successive additions of X, or by
summing the first X odd integers, or by multiplication.
• Days:  The second component is another very common component 
that, given a month number M returns the number of days D in that month, 
as previously seen in table form in Figure 3.14.  In the example shown, the 
input value is 4 for April, and the output value is 30.
• Max2:  The third component takes two numbers X and Y as input and 
returns the maximum value of these two numbers, M.  With inputs 3 and 4, 
the returned result is 4.
• Gross Pay:  The next component takes two input values, a number of 
hours worked H and a pay rate R, and it returns the gross pay G calculated 
from the input values.  The example shows an output of $550, for 50 hours of
work and a pay rate of $10 an hour.  Based on what we saw in Chapter 2, 
you can probably guess how the computation was done.
• Maj3:  The first component in the bottom row of Figure 3.30, Maj3 takes
three inputs, A, B and C with values 0 or 1, and returns the value of the 
majority of the inputs.  For example, with inputs 1, 0, and 1 the majority 
value returned is 1.
• Divide:  The next component has two inputs (Numerator N and 
Denominator D) and two outputs Q, the quotient of the division and R, which 
is the remainder of the division of N by D.  For example, with inputs 13 and 5,
the results are 2 and 3.
• Sort3 shows three input values, A, B and C, and three output values L, 
M and S.  These are the sorted input values, with L having the largest of A, B 
and C as its value, and S the smallest.  M holds the middle value.



• Mod:  The last component in Figure 3.30 takes two inputs:  the 
numerator N and the denominator D and produces one output value:  the 
remainder, R, when N is divided by D.
Data-flow diagrams are mainly used to show the data interaction among a 
number of algorithms.  Since they hide the inner details of individual 
algorithms, they simplify the study of complex interconnections of 
algorithms.  Let’s now look at some examples of such interconnected 
components.
Figure 3.31 shows the computation of the hypotenuse H of a right triangle 
(whose right sides are X and Y).  If the details of the Square and Square Root 
algorithms were shown, this Hypotenuse algorithm would look much more 
complex.
Figure 3.31 Data flow connections
Another example shown in Figure 3.32 illustrates an algorithm to make 
change using Integer Division.  It begins by subtracting the cost C from the 
amount tendered T (in the example here, 32 cents is subtracted from a dollar
leaving a remainder of 68 cents).  This remainder is then divided by 25 to 
determine the number of Quarters, the resulting remainder divided by 10 to 
determine the number of Dimes, and the result divided by 5 to determine the
number of Nickels and Pennies.
Figure 3.32 Change Maker
We would not normally use such an algorithm for making change because 
the division is too difficult.  We would probably choose to make change by 
avoiding even subtraction.  We often do things differently than computers.  
Notice too that this Change Maker algorithm could be represented as a black 
box with two inputs and four outputs (as shown in Figure 3.33, a slight 
variation from what we saw in Figure 3.30).
Figure 3.33 Change Maker as a black box
More on Data Flow Components and Diagrams
One of the most common problems encountered when creating algorithms is 
that we get into details too quickly and become bogged down in their 
complexity.  The use of data-flow diagrams prevents this tendency, or at 
least postpones it.  Data-flow diagrams allow us to think in bigger blocks.
Let’s look at an algorithm to average three exam grades of a student where 
the lowest grade is excluded.  We could do this in two different ways, as 
Figure 3.34 indicates.
Figure 3.34 Forgiving Mean   two ways
The left side of Figure 3.34 shows an algorithm that begins by sorting the 
three exam grades X, Y, Z into order with the largest labeled L, the middle 
value labeled M and the smallest called S.  Then the 



highest two values L and M are added, and this sum divided by 2 to get the 
resulting mean M.
The Forgiving Mean algorithm at the right of Figure 3.34 finds the sum of the 
three grades as well as the minimum value of the grades.  It then subtracts 
the minimum from the sum and divides this result by 2 to get M, the 
resulting mean.
At this point, it is not important to recognize which of these two methods is 
preferable.  However, it is important to realize that there are often a number 
of ways to do anything.  The first method may seem simpler, but it may be 
slower or more costly.  The choice between methods depends on more 
knowledge of cost, speed, availability, and so on.  These topics will be 
discussed in detail later in this book.
In computer science, concurrency is the ability of actions to be done at the 
same time, or in parallel.  Data-flow diagrams often reveal the potential for 
concurrency.  For example the operations of Sum and Min in Figure 3.34 
could be done at the same time.  Most of our present machines and 
languages do not take advantage of this; they wait for one to be done before 
doing the other.  In the future, our systems may find this parallelism to be 
useful and efficient.
Figure 3.35 shows two more data-flow diagrams, Base Conversions, that 
represent the algorithms for converting a number from binary (base 2) into 
decimal (base 10), and then back into binary again.
The formula algorithm for base conversion is shown in Figure 3.13
Figure 3.35 Base Conversions
The two algorithms in Figure 3.35 are described from left to right, as follows:
• Binary to Decimal:  The algorithm at the left of Figure 3.35 shows how 
a four-bit binary number (1101) is converted to a decimal value by 
multiplying the left-most digit by 8, the next digit by 4, the next by 2 and the
right-most digit by 1.  Summing these values gives the decimal value of 13.

For longer binary numbers, the leftmost digit is multiplied by 
successive powers of 2.  For example, if the binary number was (11101), the 
leftmost digit would be multiplied by 16 or 24.

Instead of speaking of the left-most digit of a number, we refer to it as 
the most significant digit.  The term “significant” is used here in the sense 
that since the left-most digit has the greatest value, it is the most significant 
digit in computing the value of the complete number.  For example, in the 
decimal number 1234, the 1 has value one thousand, the 2 has value two 
hundred, and so on.  Similarly, the right-most digit is referred to as the least 
significant digit.



• Decimal to Binary:  The data-flow diagram at the right of Figure 3.35, 
shows how the decimal value of 13, obtained from the left, is converted back
into the binary form by successively dividing by 8 then 4 then 2 and so on, to
arrive at the original binary sequence 1101.  In general, the first value to be 
used as the first divisor must be the largest power of two (2, 4, 8, 16,…) that 
is just less than the decimal number.  For example, since the decimal number
in Figure 3.38 is 13 and since 8 is the largest power of two that is just less 
than 13, 8 is used as the first divisor.

3.5 Flow of Control Diagrams
Flowcharts
Flowcharts are one of the most common ways of showing the sequence of 
actions in an algorithm.  They consist of boxes joined by lines with arrows 
showing the flow of action sequences.  The boxes are of different shapes 
depending on whether they represent actions, decisions or assertions:  
• Actions denote processes (such as input, output, calculate) and are 
represented as rectangular boxes, as shown in Figure 3.36.  Actions may 
change the value of the data on which they operate.  For example, the action
of incrementing a counter changes the value of the counter by adding 1 to it.
Figure 3.36 Action representations

The actions that can be performed on data depend upon what kind of 
data are involved.  For example, Real Numbers may be added, subtracted, 
multiplied and divided to yield Real Numbers.  On the other hand, the logical 
operators, AND, OR and NOT do not apply to Real Numbers or Integers; they 
only apply to logical quantities which have the value of True or False.
• Decisions usually take the form of tests or questions such as “Age < 
12?” or “Color?” that have two or more results (mostly, but not always True 
or False), depending upon the values being tested.  Decisions are 
represented by diamonds or boxes with pointed ends.  Each decision box 
must have an outgoing arrow labeled for every possible result, as shown in 
the examples of Figure 3.37.  These arrows lead to the next action or 
decision to be performed.  If the possible results are True and False, you 
might find it easier to follow a certain convention, like having a True result 
always take the left path out of the decision box as we do in our flowcharts.
Figure 3.37 Condition and assertion representations
• Assertions are statements or facts (such as “Age ≥ 12” or “Increasing”)
about the values of variables at some point in a 



flowchart.  They are shown in Figure 3.37 by dotted boxes pointing to the 
places where the assertions hold true.
Boxes representing actions, decisions, and assertions are combined to 
represent a complete algorithm.  In fact, they can be grouped into specific 
forms that indicate the ways actions and objects may be connected.  There 
are only Four Fundamental Forms, as illustrated in the examples of Figure 
3.38.
Figure 3.38 Four basic building block forms for flowcharts
Each of the forms in Figure 3.38 are described in detail below:
• Sequence:  The algorithm Average (also known as Mean) performs two 
actions in sequence:  one after the other.  
• Selection: The algorithm Charge involves a choice of actions depending
on whether the condition “Age < 12” is True or False.  If the age is less than 
12, then the line labeled True is followed and the charge is $2, otherwise it is 
$3. 
• Repetition: The algorithm Loan involves the repetition of some actions 
that depends on the condition “Balance greater than 0” (abbreviated as 
“Balance>0”).  As long as this condition is True, a payment is made and the 
Balance is changed accordingly.  This means that as long as money is still 
owed, the actions are repeated once for each month.  Only after the Balance 
has been finally reduced to zero is this loop terminated. 

This form is referred to as a loop because if you look at the lines that 
indicate repetition, you will see that they resemble a loop.  The condition 
“Balance>0” is referred to as the termination condition.  The action of 
making the payment and reducing the Balance is known as the body of the 
loop.  We will see the details of the actions within this loop later.
• Invocation:  Each of the three above examples could be put into a box 
and labeled for future reference.  These boxes are referred to as sub-
algorithm, and they can be invoked whenever needed.  The lower part of 
Figure 3.38 shows the invocation of the three corresponding sub-algorithms 
above.  A sub-algorithm is marked as a box with double lines on each side.  
The invocation of a sub-algorithm is considered a single action within a 
flowchart. 
The examples of Figure 3.38 illustrate the Four Fundamental Forms:  
Sequence, Selection, Repetition, and Invocation, which constitute the basic 
building blocks from which all algorithms can be made.
Notice that each of these four forms have a single entry and a single exit.  
Remember, we are representing flow of control here, not data flow.  In data-
flow diagrams, multiple entries and exits are possible for data, as we have 
seen for instance in the Change Maker algorithm of Figure 3.33.



Figure 3.39 shows a slightly more complex algorithm, Charge More.  It is an 
extension of the previous Charge algorithm, shown in Figure 3.38, used to 
calculate the price of admission to a movie.  The old algorithm has been 
modified to include a third category:  persons over 21 years old.  Notice that 
the previous Charge algorithm is embedded in this larger algorithm and is 
shaded.  An assertion is delineated by a dotted box.
Figure 3.39 Combined forms
At the right of Figure 3.39 is another algorithm, Divide, that shows how 
computers can be used to divide positive integers in a way that is very 
different from how we do division.  Since we plan to revisit this algorithm 
later, you may wish to avoid it for now.
Divide, the algorithm at the right of Figure 3.39, divides one Integer (N, the 
numerator) by another non-zero Integer (D, the denominator) to produce a 
quotient Q and remainder R.  This is done in a loop where each time the loop 
is traversed, an iteration, 1 is added to the quotient, Q, and the divisor, D, is 
subtracted from the remainder, R.  This continues until R is less than D.
The body of the loop comprises the actions of subtracting the divisor from 
the remainder and adding 1 to the quotient.  The condition “R ≥ D” is the 
loop’s terminating condition:  when it is no longer true, the loop terminates.
Before the loop begins, the quotient Q is set to 0 and the remainder R is set 
to N.  This is called initializing the loop.  This verbal description is very 
concise, but is not as descriptive as the graphic flowchart.  However beware! 
If your flowcharts are not properly structured, they may also be confusing.
Larger Flowcharts   Using Subprograms
As algorithms become larger, it is often convenient to split them into smaller 
connected algorithms.  Each sub-algorithmmay then be considered 
separately, making the entire algorithm more manageable.  Two such 
“decomposed” algorithms are shown in Figures 3.40 and 3.41.
Figure 3.40 Decomposed algorithms
This Days algorithm was previously seen in Figures 3.2 and 3.14.
Days is an algorithm that determines the number of days in any month.  It 
does this first for all the months except February.  Finding the number of 
days in February requires determining whether a leap year is involved.  Since
this is a fairly complex operation, this part of the Days algorithm is separated
from the main algorithm as a sub-algorithm named Leap.  The Leap sub-
algorithm is broken out at the right of Figure 3.40.



Leap decides if a year is a leap year by determining if the year can be 
divided evenly by various numbers (400, 100 and 4).  Notice that the sub-
algorithm Leap may seem more complex than the “main” algorithm Days.
Decomposing, or breaking up this algorithm into two parts— a main 
algorithm connected to a sub-algorithm— is not necessary in this case 
because the algorithm is simple.  However, adopting this break-out habit 
early, will be beneficial when you attempt to develop more complex systems.
Let’s develop an algorithm to play the simple dice game introduced in Figure 
3.3.  Here are the rules for this game:

First, two dice are thrown.
If their sum is 7 or 11, you win, and if the sum is 2, 3 or 12, you lose.
Otherwise remember the sum, the “point count”, and keep throwing 

until either:
the sum equals the point count (you win), or
the sum equals 7, (you lose)..

The two dice used for this game have each side marked with 1 to 6 dots.  
When the two dice are thrown, the resulting sum of dots is a value between 2
and 12.  The flowchart of Figure 3.41 describes this game.  Notice that “point
count” is referred to by the variable Point.
Figure 3.41 Dice flowchart
The main algorithm describes the first throw and the sub-algorithm More 
describes all subsequent throws (if any).  A third sub-algorithm, Throw, is 
used several times and is shown in Figure 3.42.
Figure 3.42 Throw flowchart
Flowblocks
Flowblock diagrams are an alternative to flowcharts as a way of representing 
the flow of control in an algorithm.  Flowcharts can be useful when creating 
and communicating algorithms; however, flowcharts often do not flow! The 
lines joining each box often meanders in complex paths.  This makes an 
algorithm difficult to understand which destroys the simple beauty of the 
graphic form.  Also, when creating flowcharts, many dangling lines or arrows 
can easily get connected to the wrong boxes, resulting in error-prone 
algorithms.
Flowblocks (or Nassi-Shneiderman diagrams) are graphic alternatives to 
flowcharts.  They consist of a series of rectangular boxes which are easier to 
draw than flowcharts.  The boxes can be placed (connected) only in certain 
patterns (usually one above the other so the single exit of one is the single 
entry of another), thus preventing the creation of bad structures.  So, 
flowblocks flow!



Figures 3.43 to 3.45 show algorithms illustrating the four basic flowblock 
forms of Sequence, Selection, Repetition and Invocation.  They are shown 
next to their equivalent flowcharts for comparison.
Figure 3.43 Sequence form in flowcharts and flowblocks
• Sequence:  Figure 3.43 illustrates the flowblock representation of the 
Sequence form using the Average algorithm as an example.  The flowblock 
version is essentially the same as the corresponding flowchart with the 
action boxes sitting on top of one another and the flow lines removed.  Note 
that the boxes can be enlarged because room is not needed for lines and 
arrows.
• Invocation:  The Divide blocks in Figure 3.43 provide a comparison of 
the flowchart and flowblock subprogram forms.  In the flowblock form, 
subprograms are denoted by a box within a box, which is easier to see than 
the two vertical lines of the flowchart form.
• Selection:  The flowblock selection form, illustrated by the Maximum 
algorithm in Figure 3.44, is derived from the flowchart selection box by 
removing its upper half and lower tip.  The block is entered at the top and 
then, depending on the condition specified in the trapezoidal part, the exit is 
by one of the two sides into one of the corresponding boxes below.  Finally, 
the two paths join at the bases of the two boxes, in the “output Max” box.  
The flow continues from here.
Figure 3.44 Selection form in flowcharts and flowblocks
• Repetition:  The flowblock repetition form(illustrated by Integer Divide 
in Figure 3.45) consists of an “inverted L-shaped” box that encompasses the 
body of the loop:  the part of the algorithm that is repeated while the 
condition is true.  As with the selection form, the exit flows into the top of the
next block of the diagram (not shown).
Figure 3.45 Repetition form in flowcharts and flowblocks
As algorithms become more complex, flowcharts become harder to draw and
to follow.  By comparison, the complexity of the equivalent flowblocks does 
not increase as much.
Pseudocode
Another way of representing the flow of control in an algorithm is through 
pseudocode, a mixture of natural language and mathematical notation 
independent of any programming language.  Figure 3.46 shows a comparison
between the flowblock representation of an algorithm and its pseudocode 
equivalent using the Dice Game algorithm as an example.
Figure 3.46 Dice Game flowblock and pseudocode
The flowchart version of this algorithm is shown in Figure 3.41.



The Payroll algorithm, shown as a flowblock diagram in Figure 3.47, is an 
extension of the flowchart in Figure 2.17, modified to continue computing 
employee’s pay until a negative number of hours (Hours) is entered.
It is interesting to see the nesting of the blocks in this rather complex 
algorithm.  The flowblock version is more compact, easier to draw, simpler to
understand and easier to modify.  This last advantage is important during the
development of an algorithm, as there is likely to be considerable 
modification during this process.  Pseudocode is also easy to modify.  As 
another comparison or representation, the equivalent pseudocode is also 
shown.
Note: In both Figure 3.46 and 3.47, the vertical lines in the pseudocode are 
not essential.  They are merely present to help us notice the levels of 
indentation (nesting) of the algorithm.
Figure 3.47 Payroll flowblock and pseudocode

3.6 Review   Top Ten Things to Remember
1. Algorithms are plans for performing a sequence of actions on 

data.  The actions or data need not have anything to do with computers.
2. All algorithms must be:

• Complete, all actions exactly defined,
• Unambiguous, to allow only one interpretation,
• Deterministic, to always produce a predictable result, and
• Finite, restricted to limited time and space,

In addition, algorithms should be:
• General:  applicable to a class of problems,
• Well-structured:  built from standard building blocks,
• Efficient:  economical of resources, and
• Elegant:  showing harmony of elements and economy of structure.

3. Representations of algorithms are forms for describing, denoting 
or presenting them.  There are many such ways, some better than others, so 
it is important to try various representations.

4. Verbal forms involve words, in sentences and paragraphs.  This 
representation is usually very verbose, long, and often inaccurate.

5. Algebraic forms involve mathematical symbols in expressions or 
formulas.  This is usually a very concise representation.



6. Tabular forms involve rectangular grids (tables, arrays or 
matrices) with entries in the grids.  This method is useful for summarizing 
large selections.

7. Flowchart forms involve boxes joined by lines, describing the flow
of control of actions.  They are very clear for smaller algorithms, but may 
become confusing if not structured well.

8. Flowblock forms involve only rectangular boxes, with very limited
(but significant) ways of connecting them.  They also describe only the flow 
of control of actions.

9. Data flow forms also involve boxes, but describe the flow of data.
This form is most useful at higher levels when dealing with sub-algorithms.  
The flowblocks are also useful for concurrent programming.

10. Pseudocode is a mixture of natural language and mathematical 
notation independent of any programming language.

3.7 Glossary

Action:  operation or process.
Algorithm:  a plan to perform some actions on some data.
Array:  a collection of memory cells to store some data.
Assertion:  a statement which is either true or false.
Black box:  the representation of what a process does, the input(s) it takes 
and the output(s) it produces, while hiding the internal details of the process.
Complete:  a property of algorithms specifying that all actions must be 
precisely defined.
Data type:  a description of the kind of data including the values and the 
operations that can be used on them.
Data-flow diagram:  a diagram representing the flow of the data through 
various processes.
Decision table:  a table listing all the possible combinations of the various 
conditions in a problem.
Deterministic:  a property of algorithms by which an algorithm always 
produces a predictable result.
Elegance:  a quality of algorithms showing harmony between its elements.
Finite:  a property of algorithms specifying that they must terminate in a 
finite time and use finite space.
Flow of control:  sequence of the actions of an algorithm.
Flowblock:  a diagram to represent the flow of control of an algorithm.



Flowchart:  a diagram to represent the flow of control of an algorithm.
Generality:  a quality of algorithms that are applicable to a class of problems.
Glass box:  a representation showing the inner details of a system.
Hierarchical:  a presentation of an algorithm in the form of a breakout 
diagram.
Integer:  whole number.
Logical expression:  an expression involving quantities that can have only 
two values, True or False.
Operand:  the data element on which is applied an operator.
Operator:  a symbol describing the operation to apply to one or several 
operands.
Precedence:  priority of an operator with respect to another one.
Predicate:  a logical function.
Proposition:  a logical expression having a value of True or False.
Pseudocode:  a representation of algorithms based on a mixture of English 
and mathematical notation.
Real Number:  a number having an integer part and a fractional part.
Repetition form:  a basic form of algorithms indicating the repetition of a 
number of actions.
Robustness:  a desirable property of an algorithm that is resistant to failure.
Selection:  a choice between alternatives.
Selection form:  a basic form of algorithms indicating a choice between a 
number of actions.
Sequence form:  a basic form of algorithms which indicates the performance 
of a number of actions, one after the other.
Sub-algorithm:  an algorithm that is used by another algorithm.
Symbolic logic:  a system of logic based on the use of symbols.
Table:  two-dimensional grid used to store data.
Unambiguous:  a property of algorithms requesting that there is only one 
possible interpretation for the algorithm.
Well-structured:  a desirable quality of algorithms requiring them to be built 
from simple basic blocks.

3.8 Problems
1. Binary Number Drill
Convert the following binary numbers to decimal numbers (base 10):
a.  10 b.  1010 c.  101010
and then convert the following decimal numbers to binary (base 2):
d.  7 e.  17 f.  170
2. Small Binary Numbers



Create a table of the binary numbers from 0 to 15, and notice the alternating
structure of the columns.
3. Time Base
Draw a data-flow diagram showing how to break up a Military time into hours
and minutes past midnight, and then convert this into minutes after 
midnight.  Military time is in 24 hour notation, where 1430 means 2:30pm.  
Use Divide, Multiply and Add data flow components.  For example, the 
military time 1430 is:

14x60 + 30 = 870
or 870 minutes after midnight.
4. Decimal to Binary:  Another way
Converting decimal numbers into binary can be done by dividing 
successively by 2 with the resulting remainders forming the binary number.  
Draw a data-flow diagram showing this process for the decimal number 13 
converted to the binary number 1101.
5. Octal Numbers
Octal numbers have a base of 8, with digits 0, 1, 2, 3...7.
Convert the following octal numbers to decimal:
a.  11 b.  23 c.  132
6. Hex Numbers
Hexadecimal numbers have a base of 16, with the values being 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, A, B, C, D, E, F (where A is 10, B is 11, ..  F is 15).
Convert the following hex values to decimal:
a.  11 b.  CC c.  F00
7. Other Bases
Other bases have been used, including 3 (ternary), 5 (quinary), 12, 20, and 
60 (sexagesimal).  Where and why would they have been used?
8. Bad Min
What is wrong with the following definition of Min, the minimum of two 
values X and Y?

If X is less than Y then Min is X and
if Y is less than X then Min is Y.

9. ISBN Check
Check whether the following ISBN numbers are proper numbers:
a.  0-387-90144-2 b.  0-13-215871-X
c.  0-574-21265-4 d.  0-88236-115-5
e.  3-540-90144-2 e.  1-1-1111111-1
10. Resistor Color Code
Electrical resistors have three colored bands, where each color represents an
integer:  Black is 0, Brown is 1, Red is 2, Orange is 3, Yellow is 4, Green is 5, 
Blue is 6, Violet is 7, Gray is 8 and White is 9.  The resistance is determined 
by taking ten times the code of the first 



band, adding to this the code of the second band and adding a number of 
zeros equivalent to the code of the third band.
For example, if the bands are Red, Yellow and Orange (with values 2,4,3) the 
resistance is:  24000.  Find the resistance of a “patriotic” resistor having 
band colors of Red, White, and Blue.
11. Charge Tree
For the previous Charge algorithm, with at most 3 adults and 3 kids, create a 
representation in the form of a tree.  Do this in two ways, first beginning with
adults.
12. Simpler Binary
Find the decimal equivalents of these binary numbers:
a.  11111111 b.  100000000
Use the above to find a simple way to obtain the decimal equivalent of a 
binary number consisting of any number N of ones in succession.
13. Binary Octal
Draw a data-flow diagram showing how binary numbers can be converted to 
octal numbers by “bunching” each group of three binary numbers (from the 
right or least significant bit) and replacing this by the octal equivalent.  Show
it for the decimal value of 299 which is 100 101 011 in binary and 453 in 
octal.
14. ISBN Data Flow
Draw a data-flow diagram describing the ISBN algorithm.  The inputs are the 
individual digits and the output is the check digit.
15. Expression Trees
Create a tree (data flow) diagram corresponding to the following expressions,
and compare them:
a. (X–Y) ¥ (X + Y) b. X ¥ X – Y ¥ Y
c. S + 60¥M + 60¥60¥H d. S + 60 ¥ (M + 60¥H)
e. A¥B + B¥4 + C¥2 + D f. 2 ¥ (2 ¥ (2¥A + B) + C) + D
16. Leaping Again
Represent the Leap algorithm of Figure 3.40 as a table, with three conditions 
(4 divides Y, 100 divides Y, and 400 divides Y) and eight rules 
(combinations).  Then create another table with fewer rules.
17. Change Change
Modify the data-flow diagram describing Change Maker in Figure 3.32, to 
allow for half-dollars.
18. Variation On Variance
Another way to compute the variance of N values is to subtract the square of
the averages of the values from the average of the squares of the values.  
Compute this for the four values:  10, 20, 30 and 40.
19. Hot One
Since humans hate division, they often create algorithms to avoid it.  For 
example, instead of converting temperatures by this formula:



F = C + 32
the following algorithm is sometimes used.
First, multiply C by 2 and subtract from this amount its first (most significant)
digit.  Then add 32 to this and the result should be the Fahrenheit value.
For example, 20°C becomes: 40 – 4 + 32 = 68
Check this algorithm for some numbers and indicate any limitations, 
problems or inaccuracies.
20. Find Algorithms
There are many algorithms guiding everyday things, but we may not be 
aware of them.  Investigate and determine some similar to the following.  
Attempt to express them using different methods (verbal, tabular, data-flow 
diagrams, flowblocks, and so on):
a. Sales commission (For the first thousand sold, pay at the rate of ...  )
b. Numbering of state highways (Odd numbers go south to north, 
increasing)
c. Rental agreement of items (For the first 24 hours charge ...)
d. Library fines for late books (For every day after 5 days ...  )
e. Labeling of rooms in a building, campus, etc.  (Floors, even/odd)
f. Directions to a party (If you are heading North on ...)
g. Price of Movies (Bargain prices Monday through Friday before 6 and ...)
h. Schedules of planes or buses, (Every hour, on the half hour until ...  )
i. Meeting times (Every first Friday, except ...)
j. Weight (Men should weight 106 pounds plus 6 pounds for every inch 
over 5 feet)
k. Temperature (The high for the day is 18 degrees above the 
temperature at 6 am)
l. Dog’s age equivalent to a human (First year is 15 years, second is 10, 
each year after is 5)
m. Proportional rule of two (Twice around the wrist is once round the neck)
n. Ideal Athlete (Weight in pounds is twice the height in inches)
o. Mortgage check (Limit of 30% of total income on principal interest and 
insurance).
p. Date of Easter (Involves much division)
q. Postal regulations (For sizes of envelopes, girth of packages, etc.)
Many other such algorithms can be found in the book:  “Rules of Thumb” by 
Tom Parker, published by Houghton Mifflin.



Chapter 4   Algorithm Structure
The main concern of this chapter is the structure of algorithms.  Even for 
small algorithms, good structure is important.  Algorithms that are well-
structured are usually simpler to understand, explain, modify, test, analyze 
and verify.  For large algorithms, good structure is crucial for clarity.
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4.1 Preview
Now that we have just finished learning what algorithms can look like 
(chapter 3), you may feel you are ready to begin solving problems by writing 
algorithms.  However, before you can do that, you need to learn more about 
the structure of algorithms.
Structured Programming is a method of building algorithms from a small 
number of different basic blocks (or forms) with simple interconnections.
The Four Fundamental Forms (called Sequence, Selection, Repetition and 
Invocation) are the building blocks from which all well-structured algorithms 
are constructed.  Initially, we will use flowcharts to describe these structures;
however, the emphasis will soon shift to flowblocks and then pseudocode.  
These last two 



representations make it impossible to create poorly structured algorithms. 
Top-Down Design is another significant concept that is introduced in this 
chapter.  It is the process of creating algorithms in stages, by successively 
refining them into smaller sub-algorithms, each refinement providing more 
details.
The Data and the Actions described by our algorithms in this chapter are 
common to everyday experience which shows that algorithms need not 
involve computers or mathematics.  In the chapter that follows this one, 
computing algorithms (or programs) will be considered and their data 
(numbers) will actually be simpler than the “common” data treated here.  For
this reason, we make our data very detailed and explicit here.

4.2 Building Blocks for Structured Programming
Step 3 of the problem solving method, introduced in Chapter 2, is called 
Solution Refinement.  It refines the definition of the various algorithms 
included in the structure chart of the solution.  To elaborate these algorithms,
we first need to know what building blocks are available.
The Four Fundamental Forms
Structured programming is a method of organizing algorithms using a small 
number of different kinds of building blocks (forms), with simple 
interconnections.
Basically, there are four building blocks or forms (Sequence, Selection, 
Repetition and Invocation) and, with them, we can construct all algorithms.  
Each of the fundamental forms has a single entry and a single exit, making 
their flow of control very clear.  Figures 4.1 to 4.4 represent the Four 
Fundamental Forms as flowcharts, flowblock diagrams, and pseudocode.
• The Sequence form (also referred to as the Series or Concatenation 
form) indicates the linear temporal sequence in which actions are to be 
performed.  Although we can find examples where the order of actions is 
unimportant, this is usually not the case.  The Sequence form fixes actions to
be performed sequentially (one after the other).  In Figure 4.1, A and B are 
perform one after the other.
Figure 4.1 The Sequence form
• The Selection form (also referred to as the Conditional, Alternative, or 
Decision form) specifies a condition that determines which action is to be 
done next.  For example, in Figure 4.2, if condition C is true, the path leading 
to action D is taken.  If C is false, the path to action E is followed.  The 
actions D and E themselves may be sequences of many actions.



Figure 4.2 The Selection form
After the actions on either path have been performed, the two paths 

rejoin to provide a single exit from the form.  This form is sometimes called 
the if-then-else form because it is expressed in many programming 
languages as:

IF C THEN D ELSE E.
• The Repetition form (also referred to as the Iteration or Loop form) 
indicates that one or more actions must be repeated a number of times.  As 
shown in Figure 4.3, this form begins by specifying a condition, G.  If this 
condition is true, action H, the body of the Repetition form, is performed and 
condition G is re-tested.  In other words, action H is repeated until condition 
G is evaluated as false.  At this point, the repetition stops and the form is 
exited.  This form is also called the While-loop form for it is expressed in 
many programming languages as:

WHILE G DO H.
Figure 4.3 The Repetition form
• The Invocation form (also referred to as the Abstraction form and as a 
sub-algorithm) corresponds to a group of actions which have been given a 
name.  This group of actions is invoked using its given name as if it were a 
single action.  This enables an algorithm to be defined once, and then, 
whenever it is needed, its invoked or called by its name.  For example, we 
could group the actions that calculate the average of some data together 
under the name Average.  These actions could then be performed by 
invoking or calling Average as if it were a single action.  Programming 
languages invoke such sub-algorithms with statements such as:

CALL Average, or
PERFORM Average ,or simply
Average.

Figure 4.4 The Invocation form
Forms other than these basic four are possible and are sometimes useful, but
they are neither necessary nor fundamental as they can be built from the 
four basic forms.  These additional forms will be introduced in the next 
chapter.
Connecting Several Forms  Sequences and Nests
It is easy to interconnect the four basic forms in order to construct a 
complete algorithm:  to do this, we only have to replace an action in one of 
the forms mentioned above with another form.  Thus, interconnection of the 
four forms is possible using one of the following two methods:
• Serial, where one form follows another, like simple actions, or
• Nested, where one form is within the other.



Such interconnections yield a composition where all blocks have a single 
entry and a single exit.
Of these two methods for combining forms, the method of nestingis the more
complex.  Figures 4.5 through 4.8 show different nests as both flowblocks 
and pseudocode.  These different nests can easily be identified because the 
inner form is shaded in each figure.
Figure 4.5 A Selection form nested in a Selection form
The algorithm Compare, in Figure 4.5, is an algorithm that compares three 
values A, B, and C to determine if the values are:
Increasing (such as 1, 2, 5 or -1, 0, 3),
Decreasing (such as 5, 2, 1 or 3, 0, -4),
Neither (such as 1, 0, 2 or 1, 1, 1).
This algorithm should not be seen as five boxes (two conditions and three 
actions), but should instead be seen as two forms:  a Selection nested within 
a Selection.  Viewing algorithms as forms, rather than as the parts of forms, 
reduces the apparent complexity of the algorithm, thus keeping it simple.
In this case (Figure 4.5), the reduction of complexity is from 5 boxes to 2 
forms.  Although this may not seem significant, in other cases a reduction 
from 50 boxes to 20 forms could prove very helpful.
Extending this algorithm is very easy.  The last box (Output “Neither”) could 
be expanded by further nesting to determine whether the values are 
“constant” (such as 7, 7, 7) or “non decreasing” (such as 2, 2, 3) or 
“undulating” (such as 3, 0, 3 or 3, 5, 3).  A problem asking you to extend this
algorithm can be found at the end of this chapter.
The Service algorithm, of Figure 4.6, describes a queue or waiting in line.  It 
illustrates a Repetition form that is nested within a Selection form.
Figure 4.6 A Repetition form nested in a Selection form
In Figure 4.6, if the service is available, then the following sequence of 
actions are performed:
• Get in line.
• While its not your turn, wait (Repetition form).
• When its your turn, get served.
If the service is not available, the action is to go away.
The Guess algorithm of Figure 4.7 determines an unknown value by a series 
of guesses, each guess getting closer to the final correct result.  It illustrates 
a Selection form nested within a Repetition form.  This guessing method will 
be used later in the Bisection or Binary Search algorithm.  
Figure 4.7 A Selection form nested in a Repetition form



The Pay algorithm, shown in Figure 4.8, illustrates a deeper level of nesting, 
where a Selection contains a Selection within a Selection.
Figure 4.8 Nested Selection forms
Note: an algorithm should be analyzed by looking at how many forms are 
used, and how they are interconnected.  An algorithm should not be 
analyzed by looking at how many instructions are used.
Deep Nesting
When complex algorithms are represented as either flowblocks or 
pseudocode, they are easy to split into their nested components.  Figure 4.9 
shows an example algorithm of moderate complexity, represented as a 
flowblock diagram with its pseudocode equivalent.  We are only concerned 
here with the structure of the algorithm and not with the details of the actual
conditions or actions.  We have therefore symbolized them by single letters, 
(A, B, C,…, G) for the actions and (P, Q, R) for the conditions.  Both 
representations show two nested components in shaded areas.  
Figure 4.9 A complex algorithm showing components
Each of these shaded areas could be given an action name, say W and X, 
and be shown as simple actions.  This makes for a less complex 
representation of the algorithm, as in Figure 4.10.
Figure 4.10 Simpler version of algorithm of Figure 4.9
This process of replacing nested components by simple named actions to 
produce simpler representations of the algorithm can be continued to 
produce, for example, the version shown in Figure 4.11, where the shaded 
areas of Figure 4.10 have been renamed Y and Z.
Figure 4.11 Simpler version of algorithm of Figure 4.10
In this process, simplification is achieved by hiding details inside a box and 
giving it a new name.  For the name to be more understandable, it should 
describe what the action does.  For example, if Y or Z sorts a group of 
numbers or calculates change, they should be named either Sort or Give 
Change.  The process of reducing the complexity by hiding the details is 
known as abstraction.  Eventually, the whole algorithm could be represented 
by a single named action box through simplification and abstraction.
Successive simplification of algorithms represented as flowblocks or 
pseudocode is always possible because such algorithms are always well 
structured.  Why? Because it is impossible to produce a badly structured 
algorithm in either of these representations while using the four basic forms. 
However, this does not always hold true for algorithms represented as 
flowcharts.
Figure 4.12 shows an improperly structured flowchart, which cannot be 
represented either as a flowblock or in pseudocode without having its 
structure changed.  To find out why the flowchart is badly 



structured, remember that our basic forms have only one way in and one 
way out; try to cut the flowchart into blocks that have this property.  A 
corrected and different version of this flowchart, as a flowblock, is shown on 
the right of Figure 4.12.
Figure 4.12 Avoiding badly structured flowcharts with flowblocks
Any process can be represented as a well-structured algorithm.  For this 
reason, we will represent algorithms as either flowblock diagrams or 
pseudocode in the rest of this book.

4.3 Different Algorithms, Same Problem
Equivalent Algorithms
Before going any further, its is important to realize that two algorithms may 
behave the same way, but be structured differently.  For example, consider 
the problem of determining whether or not a given year is a leap year.
The algorithm Leap1 was considered previously in Figure 3.40, and is shown 
in Pseudocode 4.1.  It begins with a Selection asking if the year is divisible by
400.  The algorithm has two other Selections nested within it.
All paths in this algorithm can be tested by the four test cases:  2000, 1900, 
1984, and 2001.  For example, the year 2001 follows the Else path at each of
the three Selections.  The paths taken by the four test cases are indicated by
the assertions at the right of the pseudocode.
Pseudocode 4.1 Algorithm Leap1
The algorithm Leap2, shown in Pseudocode 4.2, works in the opposite 
direction to Leap1.  It begins with the Selection asking if Year is divisible by 4.
Notice that in this version, the year 2001 requires only one Selection.  The 
assertion on the right show where each path for the four test cases finish.
Pseudocode 4.2 Algorithm Leap2
These two algorithms (Leap1 and Leap2) are identical in behavior because 
they produce the same results in all possible cases.  In other words, they are 
equivalent.  They are, however, different in structure as is shown by the fact 
that the same test cases encounter different numbers of selections in the 
two algorithms.  Which algorithm do you prefer?
The important thing now is not which one you prefer, but that you have a 
choice of one or the other.  If two algorithms are equivalent in one sense, this
is an opportunity for selecting the optimal one in another sense.  The 
selection depends on your goals.
For efficiency reasons (minimizing time by having fewer Selections), you 
might prefer Leap2 because in most common cases (when the 



year is not divisible by 4 which occurs 75% of the time), the number of 
Selections is smaller.  Only one Selection is encountered in Leap2, compared 
to three Selections in Leap1.
Efficiency, or speed, is not always the best goal.  Other goals include 
convenience, elegance, ease of communication, robustness and some others
that will be considered in later chapters.
We can define yet another algorithm that is equivalent to the Leap1 and 
Leap2 algorithms.  Pseudocode 4.3 illustrates such an algorithm, Leap3, 
which begins with the Selection checking if the year is divisible by 100.  The 
structure is quite different from the others, because all test cases go through
exactly two Selections; there are no short paths here.
Pseudocode 4.3 Algorithm Leap3
There are still more algorithms that determine whether or not a year is a leap
year, some of these will be considered later.  For now, the important idea is 
not to concentrate on optimization, but simply to realize that there can be 
many different ways of writing an algorithm to solve the same problem.
Alternative Algorithms
There are often alternative ways of creating algorithms, some ways more 
convenient or better than others.  Figure 4.13 illustrate algorithms that are 
not equivalent.  Alternative algorithms are not equivalent when the output is 
not the same for all possible cases.
Figure 4.13 Various triangles
In Figure 4.13, the problem is to determine whether three given numbers A, 
B, C (representing lengths of sides) could create a triangle and, if so, whether
it is one of the following three types:
• Isosceles:  two sides are equal, or
• Equilateral:  all three sides equal, or
• A right triangle:  one 90∞ angle.
Triangles of various kinds are shown in Figure 4.13.  From the non-triangle, 
we can see that a triangle is formed only if the sum of the two shorter sides 
exceeds the longest side.  If the sides are given in increasing order (say A ≤ 
B ≤ C ), the condition for a triangle is:
(A + B > C )
Similarly, for an equilateral triangle, the general condition is:
(A = B) AND (B = C)
But if A, B, and C are in order, this condition becomes simply:
(A = C)
For an isosceles triangle, the general condition is:
(A = B) OR (B = C) OR (A = C)
which becomes the following when sides are ordered:
(A = B) OR (B = C)



The point is that if the data values are structured, then this structure could 
be used to simplify the algorithm.  In the triangle example, if the data has 
the structure of being ordered, then simpler tests can be used.  There are 
various ways to put A, B, and C in increasing order.
One way is to request that the values be entered in increasing order, but we 
would have to check to see if these values were entered as instructed, and 
we would have to repeat this process until the values are entered correctly.  
Another way would be to create a sub-algorithm that puts any three input 
values into increasing order.  We will use the latter method.
Two alternative algorithms for classifying the triangles are shown in 
Pseudocode 4.4 and Figure 4.14.  In each, the action of sorting the three 
numbers A, B, C is labeled as:
Sort sides so that A ≤ B ≤ C
This algorithm, also called Sort3, will be developed later.
Pseudocode 4.4 Algorithm Triangle Classification 1
The algorithm in Pseudocode 4.4 tests first for the equilateral property, and if
it holds, terminates without indicating that the triangle is also isosceles 
although all equilateral triangles are isosceles.  In the other cases, the 
algorithm checks for the isosceles property, and then for the right triangle 
property.
The second Triangle Classification algorithm, shown in Figure 4.14, appears in
two representations:  a flowblock diagram and pseudocode to remind us of 
the equivalence of these two notations.  This algorithm first tests for 
isosceles triangles and, if successful, tests for the equilateral property.  
Therefore, an equilateral triangle will be shown as having both the isosceles 
and equilateral properties.  This may be redundant, but sometimes it is 
clearer than having to recall that one property implies (or covers) another 
property.
Figure 4.14 Algorithm Triangle Classification 2
Remember that in the latter case of Pseudocode 4.4, an equilateral triangle 
would only show the equilateral property.  For this reason, these two Triangle 
Classification algorithms are not equivalent.  However, either algorithm can 
be used for they both classify triangles.

4.4 Top-down Algorithm Design
In step 2 of our problem-solving method, Solution Design, we use a top down
approach to build a structure chart to define a solution.  For example, we 
could build a structure chart to help us plan out this section (Figure 4.15).  
Figure 4.15 Structure chart for this section



This chart, Figure 4.15, was built top-down:  we started with the section title, 
then decided that we needed an explanation of the main concept, 
Explanation, an illustration that uses a general description of a person’s job 
Job Description Example, and some computer-related examples.
The explanation itself was defined as including two small examples, Change 
Tire and Compute Pay, and a general view.  As you can see, the top-down 
approach is useful for planning a solution to any problem.  When it comes to 
creating algorithms (the Solution Refinement step of our problem-solving 
method), we use a similar approach.
Although there are two general approaches to algorithm design, top-down 
and bottom-up, we will focus on the top-down approach.
Top-down is an important method for designing algorithms.  Simply stated, it 
starts at the top, with the most general view—a bird’s-eye view—and then 
proceeds to lower levels by successively splitting the larger blocks into 
smaller, more manageable blocks.  Finally, at the lowest levels it treats the 
fine details.  The motto of this process is Divide and conquer.
Conversely, the Bottom-up method starts at the bottom with the details—the
worm’s eye view—and then proceeds to higher levels by combining smaller 
blocks.  Unfortunately, by concentrating on the details first, without the 
context provided by the bird’s eye view, the building process may quickly 
become mired in the details and unmanageable.
Other names for top-down design are:  stepwise refinement, iterative multi-
level modeling and hierarchical programming.  It is often pictured with break-
out diagrams as shown in the Figures 4.16 to 4.19.
Tip Use the top down approach to create algorithms.  Start from the 
general view and progressively refine this view until the level of detail 
becomes simple.
Design begins at the top as a single action.  Then, the action is broken out or 
refined into a small number of sub-actions.  These sub-actions are 
independent of one another and are not very detailed.  This process 
continues by further refining each sub-action into sub-sub-actions, gradually 
including more details.
For example, Figure 4.16 shows the single action Change Tire, broken into 
the following three sub-actions:
• Set-up,
• Exchange Tires, and
• Clean Up.
Figure 4.16 Breaking down Change Tire



At the third level, each of the previous sub-actions are refined further.  If any 
of these smaller actions were seen as being too complex to be understood, 
they too could be broken out into further details.  Ultimately, a stage is 
reached where every action is small enough to be understood without any 
further simplification:  this is the complete solution.
Figure 4.17 shows a more computer-oriented example, Compute Net Pay.  
Once the last stage of stepwise refinement is reached, we are ready to 
express the algorithms in pseudocode, and from there, in some programming
language.
Figure 4.17 The top-down view of Computing Net Pay
The two diagrams shown in Figures 4.16 and 4.17 have been drawn as “true”
top-down diagrams—they start from the top and, as one moves down the 
page, they become more detailed.  They are just as much break-out 
diagrams as are the left-to-right versions.  The orientation is incidental; 
clarity is the real criterion.  In Figure 4.18, we have reverted to the more 
familiar left-to-right form to illustrate the top-down design method in a 
generic manner.
Figure 4.18 A generic break-out diagram
The above figure illustrates the general break-out process and shows how 
answers to four important questions (what, how, when and why) are found 
using break-out diagrams:
• What main action is being done? This is shown furthest to the left.
• How is an action done? This is shown broken out at the right of an 
action.
• When are the actions done? This is specified by the sequence along the
far right of the diagram.
• Why is a sub-action done? This is found to the left of the action.
Although, sometimes, only the step-by-step sequence of actions is required 
(the When at the right), it is important to see the rest of this structure.  It is 
also very important to realize that each level drawn on the break-out 
diagram must be complete.  This means that at each level drawn, all of the 
sub-actions (or sub-sub-actions) must be present.
Make each level of your break-out diagram complete.  If, for example, you 
decide to only develop it two levels deep, make sure that the second level 
contains all of the actions necessary (even if they are very general) to solve 
the problem posed.  For example, in Figure 4.17, if we were to only have the 
first 2 levels, we would need both definitions Find Gross Pay and Determine 
Deductions to make the BOD complete.



Don’t leave out any actions at any of the levels of the break-out diagram.  In 
Figure 4.17, notice that the word “etc.” at the right indicates that this break-
out diagram is incomplete!
The next few pages contain different examples of algorithms created using 
top-down design.
Job Description Example
Figure 4.19 shows the algorithm that an employee at a fast food restaurant 
follows.  This algorithm is described in a top-down manner.  It is developed in
levels to show the convenience of “sub-” blocks in the top-down view.
Figure 4.19 Algorithm for an employee at a fast food restaurant
Level 1, in Figure 4.19, is a high level that shows no details, but gives a 
general view of how to proceed and refers to the sub-block Attend to 
Customer at a second lower level.  Then, Attend to Customer is further 
broken down into three sub-blocks (or sub-algorithms) Take Order, Fill Order, 
and Handle Payment.  Finally these three sub-blocks are refined in level 3.
If the detail is still not sufficient, then more levels must be created.  For 
example, the last sub-algorithm, Handle Payment, refers to another sub-
algorithm Make Change, which could be further refined at level 4 (not shown 
in Figure 4.19).  To reveal how the change would be made, this Make Change 
sub-algorithm will be discussed in detail later.
The top-down method forces us to devise a general overview of a system 
before getting into its details.  It also shows the segmenting of a larger 
system into smaller, independent modules such as Take Order, Fill Order, and
Handle Payment.  It is this segmenting that makes the complexity more 
understandable and manageable.
Change Maker Example
Note that an algorithm similar to Make Change was previously shown in 
Chapter 3 (Figures 3.32 and 3.33).
The order-taker algorithm of Figure 4.19 referred to the sub-algorithm Make 
Change which, as the name suggests, makes change for a customer.  We will 
further illustrate the top-down algorithm design process, by developing this 
Make Change sub-algorithm using only pseudocode.  Notice that the 
difference between an algorithm and a sub-algorithm is slight; a sub-
algorithm is simply an algorithm that can be invoked by other algorithms.
The sub-algorithm, Make Change, will make change from an amount 
tendered for an item whose cost is given in cents.  At the very top level, 
there is a simple action Make Change.
By itself, this does not help very much, but it does provide a start from which
to develop the next level, which consists of a sequence of 



two sub-actions.  The next step is to expand these two sub-actions.  As 
indicated by their names, Compute Change computes the amount to be 
returned to the customer and Give Change produces the proper coins.  
Expanding Compute Change is easy and shown in Figure 4.20.
Figure 4.20 Break-out of Make Change sub-algorithm
The rest of this section will be used to develop the Give Change algorithm, as
there are many ways to solve this problem.  One way, shown in the shaded 
box in Figure 4.20, is to output Remainder all as pennies.  If the cost is 1 cent
and the amount tendered is a dollar, this means that 99 pennies are output! 
This is one solution that works, is correct, complete and short.
This solution is, however, not practical or convenient because giving a 
customer change in pennies creates “ill will”.  This means that Pseudocode 
4.8 must be replaced with a solution more beneficial to the customer.
Another common way of making change involves adding up coins from the 
amount Cost up to the amount Tendered.  This method is often preferred by 
people who wish to avoid computing the remaining amount because they 
prefer not to subtract.  This method will be treated in Chapter 5.
Yet another way of making change is to modify the first solution in 
Pseudocode 4.8.  The modified version is shown in Pseudocode 4.5.
Pseudocode 4.5 A better way of refining Give Change
Since we wish fewer coins to be output, we first consider large coins, 
quarters, followed by dimes, nickels and then pennies.  What we do for each 
coin is a detail not considered at this level.  The sub-actions will be “opened 
up” at the next lower level.
Assertions are very useful to list along with algorithms, here (Pseudocode 
4.5) they are shown in braces at the right of the algorithm.  For example, at 
the beginning it is assumed that the amount to be returned to the customer, 
Remainder, is positive {Remainder ≥ 0}.  At the end, the Remainder is zero.
At the next level, each of the sub-actions of Give Change of Pseudocode 4.5 
will be shown in detail.  We will combine this with the Compute Change part 
to give the complete Make Change algorithm in Pseudocode 4.6.
Pseudocode 4.6 The complete, detailed Make Change algorithm
The sub-actions from Pseudocode 4.5 are broken down in Pseudocode 4.6 as 
follows:
• Give Quarters, the first sub-action, is broken out into a Repetition form,
because more than one quarter may be output.  While the Remainder is 
greater than 25, a quarter is output and the 



remainder is decreased by 25.  This continues until the Remainder is less 
than 25 as indicated by the assertion {Remainder < 25}.
• Give Dimes, the second sub-action, is broken out in a similar way to 
Give Quarters.  When its actions are done, Remainder is less than 10 as 
shown in the assertion.
• Give Nickels, the third sub-action, is slightly different from the previous
two because at most one nickel can be output.  If Remainder is greater than 
5, a nickel is output and Remainder is decreased by 5.
• Give Pennies, finally is done with a Repetition similar to the first two 
sub-actions, because more than one penny may be output.
Similarity is a useful property.  Similar things should be treated similarly.  
Most of the coins in Pseudocode 4.6 were treated similarly with a Repetition 
form, but Give Nickels was done with a Selection form.  This Selection form in
Give Nickels can be converted into a Repetition form as shown in Pseudocode
4.7.
Pseudocode 4.7 Two equivalent versions of Give Nickels
To show the equivalence in the behavior of these two versions, assertions are
also indicated.  Initially the Remainder is less than ten.  Considering the 
Repetition form (right), if Remainder is not greater than or equal to 5, then 
nothing is done.  When you apply this same condition to the Selection form, 
nothing is done as well.  This means that when Remainder is not greater than
or equal to 5, then both forms are equivalent.
If Remainder is greater than or equal to 5 (and less than 10 as the assertion 
states), then the body of the Repetition is performed (a nickel output and 
Remainder decreased by 5).  Once the Repetition form has been performed 
once, the new value of Remainder is now less than 5, so no further Repetition
is possible.  This again is equivalent in behavior to the Selection form at the 
left.  Hence these two sub-algorithms, in the context given by the assertions,
are equivalent in behavior.
As with all algorithms, modifications to the Make Change algorithm are 
possible.  For example, it could be generalized by allowing the input of any 
amount to be tendered rather than at most a dollar—this is assumed by the 
fact that no bills are considered in the change making.
This algorithm could also be extended to more denominations (fifty-cent 
coins, dollar and two-dollar bills), and it could be made foolproof by testing 
that the input values are in the proper range (cost is positive, and amount 
tendered is greater than or equal to the cost).  Notice that the block form 
suggests that modifications can be done by inserting or substituting blocks, 
which encourage “modular” design.  



More of these equivalent substitutions will be considered in later chapters.
A Game Example, Fifty
Sports and games often provide examples of algorithms because they 
involve rules that have the same properties as algorithms:  generality, 
completeness, consistency and finiteness.
Games may involve chance (using dice, cards, pebbles, and so on) or they 
may involve skill (using balls, bats, arrows, targets, and so on) or both.  Here 
we will concentrate on a simple game involving dice.  Dice games have a 
long history; they have been found in ancient Egyptian tombs dated 1500 
BC.  The earliest dice were probably a cube shaped bone, the astragalus, 
from the ankle of a sheep.
Dice usually consist of cubes (of bone, ivory, sugar, etc.) made with 1 to 6 
dots on a face, so that opposite sides add up to 7.  When a die is rolled, each 
face has an equal chance of landing face up.  When two dice are thrown, 
some sums are more likely than others.  For example, a sum of two can be 
formed in only one way (1 + 1), whereas the sum of 7 can be formed in 
many ways (1 + 6, 2 + 5, 3 + 4, ...).
Fifty is a dice game played by two people with two dice.  It is described in 
Figure 4.21.
Figure 4.21 Verbal description of the dice game Fifty
We will use the development of an algorithm to play Fifty as another example
of the top-down development method.  At the first level of detail, Fifty splits 
into three sub-actions, as shown in Pseudocode 4.8.
Pseudocode 4.8 Refining Fifty into three actions
Set up initializes the scores, Play goes through a game and Evaluate decides 
the outcome.  These three sub-actions are explained as follows:
• Set up simply sets the two scores Score1 and Score2 to zero.  Notice 
that the order of playing is not important; the player who goes first does not 
have an advantage, since both players get a turn during every round.  In 
other games, the setup is often more complex.
• Play loops through a round during which each person gets a turn, and 
this continues as long as neither player has a score of 50 or more.
• Evaluate will choose the winner.  It first determines whether there is a 
tie.  If there is no tie, then at the next level, the winner is determined.
At the second level of development, the algorithm is shown in Pseudocode 
4.9.
Pseudocode 4.9 Refining each action in Fifty further



The sub-algorithm Turn of Player must also be broken out further into the 
following stages or levels:
• First, the dice are thrown to get DiceA and DiceB using the Throw sub-
algorithm.
• Then, a Selection determines whether there are any Doubles.  For 
example, if the scores DiceA and DiceB are equal, another sub-algorithm 
determines whether they are a Good Double or not.
At this level, the sub-algorithm Turn of Player is shown in Pseudocode 4.10.
Pseudocode 4.10 Defining the sub-algorithm Turn of Player
The sub-algorithm Doubles may then be expanded according to the rules of 
the game so that the sub-algorithm Turn of Player becomes Pseudocode 
4.11.
Pseudocode 4.11 Refining Turn of Player further
Finally, Good Double is expanded to determine how much should be added to
the player’s score.  The fully-expanded Turn of Player sub-algorithm is shown 
in Pseudocode 4.12.
Pseudocode 4.12  The complete, detailed sub-algorithm Turn of Player
The only other sub-algorithm left to be expanded is No-Tie and, when this is 
done, Evaluate becomes the sub-algorithm in Pseudocode 4.13.
Pseudocode 4.13 Refining the No-Tie part of Evaluate
We now have all the parts of algorithm Fifty and we can produce the final 
solution by putting them all together.  The algorithm, fully expanded, is 
shown in Pseudocode 4.14.
Pseudocode 4.14 The complete Fifty algorithm
We have described this of the previous algorithms in elaborate detail as an 
illustration of the top-down development method because it is so important 
to the production of well structured algorithms.  In practice, most of these 
stages would go on in the mind of the programmer without being put on 
paper, but they would take place!
These shortcuts come only with experience.  If you are a beginner, you 
should try to design your algorithms by mimicking what we have done in this
example.  After creating a few algorithms on your own, you will adapt the 
method to your particular way of thinking, and creating algorithms will 
become easier.
Note: Whether you are a beginner or not, you will always need method.
Incidentally, the top-down method did not come into being with computers.  
It has been known for hundreds of years.  René Descartes, the French 
philosopher and mathematician, wrote in 1637 in his Discourse on Method,



Divide each difficulty into as many parts as possible
so that it may be overcome more easily.
Starting with the simplest and easiest to understand,
consider things in order, moving by degrees
to the most complex.

4.5 How Data and Algorithms Fit Together
In Chapter 3, we defined algorithms to be plans for performing actions on 
data.  In this chapter, we have placed the emphasis so far on the actions, 
and we have hardly mentioned the data.  In fact, all the data we have used 
in our earlier examples have been numbers that seem simpler than actions, 
but we will soon see that data can be much more complex.  Let’s try to 
establish a more balanced view of data and actions.
Structured Data
Emphasis so far has been on the flow of control, or sequence of actions and 
the structure of this flow.  Our data have been simple Integers or Real 
Numbers, but data can also be structured.  As with algorithms, structured 
data can be described by break-out diagrams.
Figure 4.22 Card deck decomposition
For instance, a deck of playing cards provides an example of structured data.
It consists of 52 cards, broken into four suits, each having thirteen ranks.  
Figure 4.22 shows a deck as a break-out diagram that is a simple, self-
explanatory structure.
Similarly, Figure 4.23 shows how a page of text (stored in a computer 
memory) consists of lines, which further break up into characters.  Inside the 
computer, each character is represented by eight binary digits, bits.  This 
simple structure shows a page of 30 lines, each having 70 characters, with 
each character represented by 8 bits.  So, each page uses a total of 30¥70¥8
or 16 800 bits.
Figure 4.23 Text break-out diagram
In Figure 4.24 we show again how a year can be split up into months, which 
are split into days and then into hours.  Since there is not a constant number 
of days in each month— it varies from 28 to 31— the last number in the 
second level is represented by an “n”.
Figure 4.24 Time break-out diagram
Figure 4.25 shows an organization of people, each specified by name, 
address and attributes.  Each of these three parts is then broken out further.  
Notice that at the first level all the break-outs were of the same form 
(persons), but at the second level each break-out has a different form.
Figure 4.25 People break-out diagram



Structured data of the type in Figure 4.25 can also be represented in a linear 
form using indentation.  Each level is indented from the preceding level, as 
shown in the representation of the previous example in Figure 4.26.
Figure 4.26 Linear form of structured data
As you may have already guessed, structured data is very important in 
computing.  We introduce structured data here because we want you to be 
aware that data is usually more complex than what you have seen so far.  
Structured data will not be used in the next three chapters in order to 
concentrate on the action parts of algorithms, only simple data values will be
used.  In Chapter 8, more complex data structures will be introduced and 
used.
Chili Recipe Example
The recipe shown in Figure 4.27 is an almost typical cooking algorithm for 
making Chili; however, it can also serve as a model for programs in many 
modern programming languages.  The recipe comprises two major sections:  
the ingredient list (right) and the algorithm (left) which gives the sequence of
operations to be performed using the ingredients.
Figure 4.27 Cooking algorithm for Chili
Secret Sauce is a sub-recipe, listed as a part of the ingredients at the top of 
Figure 4.27, and then defined as a separate recipe in the list of instructions.  
Secret Sauce is viewed as an ingredient for the main recipe, but is also 
viewed as a separate recipe by the cook!
In a parallel manner, an algorithm is comprised of two parts:
• the data list, and
• the list of instructions which shows the sequence of operations to be 
performed on the data.
The model presented by Figure 4.27 (data specifications followed by sub-
algorithms followed by the main algorithm), corresponds to the structure of 
programs written in many modern programming languages such as Pascal or
Modula-2.
The same recipe for Chili, shown as a data-flow diagram in Figure 4.28, 
contrasts the previous flow of actions.  Notice how Figure 4.28 resembles a 
tree.  Its leaves represent the data and each node indicates how the data 
“flows together” to make new data, eventually arriving at a final node (the 
root of the tree) which indicates the final data, Chili!
Figure 4.28 Data-flow diagram for Chili
There is a huge difference between the representations (pseudocode and 
data-flow diagram) used in Figures 4.26 and 4.27.  As we have already 
mentioned in Chapter 3, pseudocode describes flow of control (the sequence 
of actions in time), whereas the data-flow diagram 



describes the flow of data without concerning itself with actions.  Pseudocode
will show repetitions and selections since its emphasis is on actions; in a 
data-flow diagram, repetitions and selections of actions have no meaning.
Assertions can be made in the two algorithm representations.  We have seen 
that assertions were comments that indicate the situation at any given point 
of an algorithm.  In pseudocode, between any two statements, we can make 
an assertion about the state of the operation of the algorithm.  Similarly, in a
data-flow diagram, we can put an assertion with any line joining two boxes.
The assertion in the pseudocode of Figure 4.26 is shown in braces, while the 
assertion in Figure 4.28 is shown in a dotted box.  Notice the difference 
between what is being asserted in each case:
• In the pseudocode, which is action oriented, the assertion is “finished 
simmering”, which makes a statement about the progress of the action in 
relation to time.
• In contrast, the assertion in the data-flow diagram, “soaked beans”, 
makes a statement about the state of the data.
This does not mean that we cannot use the data flow assertions in the 
pseudocode, as they give indications on the data that could be the results of 
an action.  The opposite is also true for we could probably use most 
pseudocode assertions in data-flow diagram.  However, in practice, the two 
representations use more specialized assertions that are action-oriented or 
data–oriented.
To understand an algorithm, you might find that sometimes the flow of 
actions is more useful, while at some other times, the flow of data is more 
important.
In this example, we have overemphasized the data to remind you that the 
role of data in an algorithm is of equal importance as the role of actions.  Our
next examples will be more action oriented, but we will define their data as 
well.
Card Trick Example
For more information on arrays, see Chapter 8.
Now, let’s look at an algorithm that uses structured data.  This example 
involves a card trick.
21 playing cards are placed face-up in 7 rows and 3 columns, as shown in 
Figure 4.29.  Such a data structure is often called an array.  The cards in any 
column are overlapped to maintain their order, and to make a column easy 
to pick up quickly.
Figure 4.29 Arrangement of cards for Card Trick
Once the cards have been arranged in this manner, perform the following 
steps:



1. Ask someone to select one of the 21 cards, without picking it up.
2. Without pointing at the card, have the person indicate the 

column that contains the selected card.
3. Pick up the columns in this order:

• A non-indicated column,
• The indicated column
• The other non-indicated column

4. Deal out the cards in its familiar 7 rows by 3 column structure, 
row by row!

5. Repeat steps 2 through 4, twice.
6. Finally, count off 10 cards.  The 11th card will be the card that 

the person selected.
This process is entirely described by Pseudocode 4.15.  Try it.  Notice that it 
does not take any knowledge or skill on your part, just the ability to follow 
directions.
Pseudocode 4.15 The Card Trick algorithm
Binary Conversion Example
Our next example (Pseudocode 4.16) is an algorithm to convert a positive 
integer number in base 10 to its equivalent in base 2.  It uses one item of 
data, a number N, initially stored in a variable, whose value keeps changing 
during the computation.  This variable is repeatedly divided by 2 and the 
remainder of the divisions is output until it reaches zero.  The output values 
(always 0 or 1), when reversed, make up the required equivalent binary 
number.
Pseudocode 4.16 Decimal to Binary algorithm
For example, let us convert the decimal number N = 13.  Figure 4.30 
contains a representation of the variable N (left) showing its successive 
values as the algorithm is performed (right).
Figure 4.30 Using the Decimal to Binary algorithm to convert N=13
As Figure 4.30 shows, the binary equivalent of 13 is 1101, or the value of the 
outputs taken in reverse order.
There are many methods to convert decimal numbers to binary.  Notice that 
this method (Pseudocode 4.16) is very different from a previous method used
in Chapter 3, which divided the number N by successively smaller powers of 
2 (8, then 4, and finally 2).
Guessing Game Example
A guessing game involves two players, with either one being a computer.  We
have already seen one version of this game in Figure 4.7.  Here we will 
develop a solution using a similar method, but with a different approach.



One player, the Challenger, selects a number between 0 and 100 and the 
other player, the Guesser, tries to guess it in the fewest number of tries.  The
only information given to the Guesser by the Challenger is whether a guess 
is higher or lower than the selected number.
Challenger, in Figure 4.31, is the algorithm that could be followed by the 
player who selects the number and tells the challenger if her guess is too 
high or too low.  This algorithm accomplishes the following actions:
• It selects the mystery number,
• Rates the guess, and
• Keeps count of the number of guesses.
Figure 4.31 Challenger sample data and algorithm
Note: This method of halving the correct range of values at each try is called 
Bisection or Bracketing.  It will also be useful later in solving equations, and 
efficiently searching through data.
The algorithm Guesser, Figure 4.32, describes one systematic way of making 
guesses, and could be followed by the player trying to guess the 
Challenger’s number (between 0 and 100).  It simply keeps track of the high 
and low values that were guessed, and chooses the middle value as the next 
guess.  The middle value is the average of these two values.  Depending on 
the outcome of the guess, one of the limits is changed (to this middle value).
Figure 4.32 Guesser sample data and algorithm
Notice that both algorithms have a similar structure consisting of a Selection 
within a Repetition.  Both also involve only three numbers as data.  The 
Challenger must know the following data:
• The Number selected,
• The Count, and
• The Guess.
The Guesser must know the following data:
• The High values, and
• The Low value.
• From these two limits, the Guesser computes the middle value which is
taken to be the Try.
A typical run, trace, or “conversation” between the Challenger and Guesser 
follows.  Suppose that the Challenger’s mystery number is 31, which is 
between 0 and 100.  The trace in Figure 4.33 shows how the values of the 
two players’ data change as the game is played.  Remember, each player is 
working according to an algorithm so that the two algorithms are performing 
simultaneously but with some kind of synchronism.
Figure 4.33 Trace of data between Challenger and Guesser



In the above figure, the number was discovered in just 4 guesses.  In 
general, it would have taken at most 7 guesses.  This is because the right 
answer always lies between the values of High and Low, this is the “Range”.  
The Range starts at 100 and is halved each time a guess is made.  After 
seven tries, the range will be 1, which must be the right answer.  Often, the 
right number will be tried before seven guesses.  The algorithms will 
terminate earlier.  In n tries, this bisection algorithm can select between 2n 
numbers.  So in ten tries, it can guess any number between 0 and 1023.  
Using this technique, if the Challenger selected a number between 0 and 1 
000 000, the Guesser would take at most 20 tries to find it!

4.6 Review  Top Ten Things to Remember
1. Structured Programming is a method of organizing algorithms in 

a simple form, using a small number of building blocks, with simple limited 
interconnections between them.  It usually results in algorithms which are 
clear, orderly, understandable, efficient, modifiable and provable.

2. In Structured Programming, all algorithms are built from four 
standard building blocks or fundamental forms:
• Sequence:  actions are sequentially ordered and are performed one 
after the other.
• Selection:  a condition chooses which action will be performed.
• Repetition:  one or more actions will be repeatedly performed a 
number of times.
• Invocation:  defines a group of actions and names it.  These actions are
performed by invoking the group name.

Each of theses forms has a single entry and a single exit.
3. All possible algorithms may be created using the Four 

Fundamental Forms, interconnected using one of the following two methods:
• Serial.  one form follows another.
• Nesting.  one form is contained within another.

4. Algorithms should be viewed as a collection of connected forms 
rather than a number of boxes for a one large form.  Viewing algorithms in 
this way helps reduce their apparent complexity, thus keeping them simple.  
To create well-structured algorithms, use flowblock diagrams or pseudocode 
instead of flowcharts.

5. Abstraction is the process of reducing the complexity by hiding 
details.  Actions are grouped and replaced by the group name, thus reducing 
the amount of detail, and giving a simpler, abstract view.



6. Equivalent Algorithms are identical in behavior, but may be 
structured differently.  When two algorithms are equivalent, there is an 
opportunity to select one or the other, depending on your goals.  For now, it 
is important to remember that there can be many different ways of 
constructing an algorithm to solve the same problem.

7. Alternative Algorithms are algorithms which act the same, but do
not produce the same output for all possible cases.  Alternative algorithms 
are similar in behavior and may be structured differently.

8. Top-down Design (whose motto is divide and conquer) is the 
process of developing an algorithm by starting at the most general view— 
bird’s-eye view, and then proceeding stepwise by refining all parts until 
ending up at the details— worm’s eye view.

9. Actions and Data are both considered in this chapter, but the 
emphasis is on the structure of actions (control flow).  To keep the two in 
perspective, stepwise refinement can also be applied to data with break-out 
diagrams.

10. Data-flow diagrams emphasize data rather than actions and 
provide another approach to the design of solutions.  They are a complement
of the control flow diagrams (flowblocks and pseudocode).

4.7 Glossary

Abstraction:  A method of conceptual simplification through the suppression 
of details that are irrelevant to the application of the abstraction.
Action:  some small process applied to some data.
Array:  A data organization by rows and columns.
Assertion:  A statement that is either true or false.
Binary search:  A search algorithm that repeatedly halves the area of search 
until it is reduced to one element, the object of the search or it is found that 
the item is not present in the data being searched.
Bisection search:  Synonym for Binary search.
Data:  Something given or measured.
Data Structure:  Organization of data elements grouped for a given purpose.
Divide and Conquer:  A method to break the complexity by considering small 
parts of a problem.
Four Fundamental Forms:  The Sequence, Selection, Repetition and 
Invocation forms; each of which has a single entry point and a single 



exit point.  These four forms together are sufficient to build all programs.
Hierarchical programming:  Synonym for top-down design.
Invocation:  Use of a sub-algorithm.  One of the Four Fundamental Forms.
Method:  Orderly procedure.
Modular design:  Software design where the program is divided into separate
sections or modules that are relatively independent so that any modifications
to the program tend to be confined to only a few modules.
Nesting:  The inclusion of a given form into another.
Record:  An aggregate of data values of possibly different types arranged in a
hierarchical manner.
Repetition:  One or more actions repeatedly performed a number of times.  
One of the Four Fundamental Forms.
Selection:  A condition or decision which chooses an action to be performed.  
One of the Four Fundamental Forms.
Sequence:  One of the Four Fundamental Forms.
Structured programming:  A technique for organizing programs by building 
them from a few basic blocks like the Four Fundamental Forms.
Structured Data:  data made of several parts.
Top-down:  A way of defining things starting at a general level and 
descending gradually into details.

4.8 Problems
1. Change Change
The change-making program of Pseudocode 4.6 can be modified in many 
ways.  One way is to anticipate problems in the input values and act 
accordingly.  For example, the input cost may be negative, or it may be more
than the amount tendered (one dollar in this case).  Draw a flowblock 
diagram to take this situation into account.
2. Friendly Time-out
The following algorithm accepts input of a time in 12-hour digital form as 
hours H (ranging from 1 to 12) and minutes M (ranging from 0 to 59).  It 
outputs the time in a friendly form as shown on the following flowblock 
diagram.  However, there is an error in this algorithm; it does not work for 
some values.  Test this algorithm and find the error.
Problem 2
3. Dispense 15



The given flowchart describes a machine that accepts a sequence of input 
coins (nickels and dimes only) and outputs a 15-cent item and the 
appropriate change of 5 cents, or zero.
This algorithm consists of a “complex” nest of Selection forms.  Draw this in 
the form of a flowblock diagram.  Then create another simpler algorithm by 
using a Repetition form.
Problem 3
4. Chili Block
Convert the Chili recipe pseudocode, in Figure 4.27, into a flowblock diagram.
5. Convert
Convert the pseudocode for the Triangle Classification 1 algorithm shown in 
Pseudocode 4.4 into a flowblock diagram.
6. More Compare
Extend the Compare algorithm of Figure 4.5 so that it indicates also whether 
the input values are constant, non increasing (for example 3, 2, 2), non 
decreasing, increasing then decreasing (like 1, 3, 2), decreasing then 
increasing.
7. Change Make Change
Modify the Make Change algorithm of Pseudocode 4.6:
a) so that any amount T can be tendered (input).
b) so that half-dollars can be given as change.
c) so that two-dollar bills can be given as change.
8. More-Time
Create an algorithm to convert a given number of seconds S (say one million)
into the equivalent number of days D, hours H, minutes M and seconds S.  
Represent this algorithm in two different ways, in pseudocode similar to 
Make Change and as a data-flow diagram.
9. Pints
Create an algorithm to convert a given number of pints into its equivalent 
number of gallons, quarts and pints.  Note:  4 quarts = 1 gallon, 2 pints = 1 
quart.
10. Romanums
Create an algorithm to convert Arabic numbers (ordinary positive integers) 
into their corresponding Roman numbers.  Assume inputs less than 300 at 
first, then extend to 3000.
a) if, at most, four consecutive occurrences of a single symbol are 
allowed, where 4 is IIII, 90 is LXXXX and 1984 is MDCCCCLXXXIIII.
b) if, at most, three consecutive occurrences of a single symbol are 
allowed where 4 is IV, 90 is XC and 1984 is MCMLXXXIV
Note:  I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000
Hint:  See the Change Maker problem.
11. Dispense 7



Create an algorithm to dispense items costing 7 cents.  The inputs are 
sequences of nickels or pennies only, with only one coin entered at a time.  
The outputs are an item and appropriate change.
12. General Problems on Top-Down
Design an algorithm, top-down, for four of the following.  Show the break-out 
diagrams for three to four levels only.

1. Start a car.
2. Make a phone call.
3. Shave (face or leg).
4. Shampoo your hair.
5. Operate a combination lock.
6. Set an alarm clock.
7. Parallel park a car.
8. Balance checkbook.
9. Wash your clothes.
10. Shop for groceries.
11. Replace flashlight batteries.
12. Clean a fish.
13. Paint a wall.
14. Change a light bulb.
15. Make a bed.
16. Sharpen a pencil.
17. Tie a knot (bow).
18. Find a name in a telephone directory.
19. Fold a newspapers to create a hat.
20. Decide which four of the above to do.

13. Create Your Own
Create an algorithm describing something of your own choice.  Develop it in 
a structured top-down manner.
Some examples are:
• operating a machine, camera, camp stove, projector, computer,
• going through a process, repairing something, developing film,
• playing or scoring a game, bowling, tic-tac-toe, hide and seek.
Dice Problems
Create algorithms (top-down and structured, of course) describing the 
following dice games.  The problems involving archery and darts are really 
disguised dice problems.  The dice problems could also be translated into 
similar games of skill rather than games of chance.
14. Rotation Dice
The game of Rotation is played with two dice and two people.  The players 
each take a turn for a round.  There are 11 rounds in a game, 



one for each of the combinations:  2, 3, 4, up to 12.  During the first round, 
the goal is to throw a 2, during the second round it is to throw a 3 — and so 
on up to 12.  Each time a player is successful, that number of points is added
to that player’s score; otherwise nothing is added.  The winner is the player 
with the higher score after the 11 rounds.
15. Pig Dice
The game of Pig is played with one die and two people.  The players each 
take a turn during a round and the rounds continue while all scores are less 
than 100.  During a player’s turn, the die is repeatedly thrown and the score 
accumulated until either a 1 comes up or the player chooses to stop.  If the 1
comes up, the sum is lost; otherwise, it is added to the player’s score.  The 
winner is the one whose score is the highest at the end of the game.
16. Dice Climb
Create an algorithm describing the following game involving two players and 
one die.  The players try to roll a 1, then a 2, a 3 and so on, up to 6, in that 
order, but not necessarily one number immediately following the other.  First,
they roll a die to determine who goes first (the highest).  Then, they alternate
turns, stopping as soon as one player (the winner) reaches the value 6.  
During each turn, a player rolls the die once and keeps rolling only if the 
desired numbers are obtained.
17. Dice 21
The game of Dice 21, or dice blackjack, is played with one die and any 
number of players.  Each player in turn rolls the die until the accumulated 
sum is 16 or over.  If the sum is over 21, the player “goes bust” and is 
eliminated from the game.  The winner is the player (or players) whose score
is closest to 21 after all players have had a turn.
18. Archery Scram
Create an algorithm describing the following game of skill involving two 
players shooting arrows at a target.  The target consists of nested circles 
labeled with values from 1 to 6; value 1 is farthest out and value 6 is in the 
center, or Bull’s eye.
The players shoot one arrow each.  The one who comes closest to the center 
becomes the “stopper”, and the other becomes the “scorer”.  They then take
turns, each shooting three arrows per turn.  The stopper aims to close a 
sector by hitting it.  The scorer aims to get as many points as possible, 
before all sectors are closed.  When all sectors are closed, the players swap 
roles.  The winner is the player who scores the highest.
19. Darts



Create an algorithm describing the following simple dart game.  It involves 
two people throwing darts at a circular target that is divided into different 
scoring areas.  The first turn goes to the player who throws a dart closest to 
the center of the target.  Each player throws three darts in a turn, starting 
with a given score (say 101) and attempts to reduce the score exactly to zero
by subtracting points corresponding to where the darts land.  If a player’s 
score would take the player past zero, the score does not change.  The first 
player to reach zero wins.
Chapter 5   Algorithm Behavior
In this chapter, we finally begin to consider programs, which are algorithms 
that are intended for computers.  All the algorithm concepts we have seen so
far apply to programs, including their properties, their various 
representations and the Four Fundamental Forms.
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5.1 Preview
In order to concentrate on the algorithm actions, we will now view data 
uniformly as boxes containing the various kinds of values, like Integers, Real 
Numbers, Logical values, and so on.  Actions, including arithmetic operations,
input and output operations, and assignments, will be limited to 
manipulations of these simple data values.
The Four Fundamental Forms (Sequence, Selection, Repetition and 
Invocation) will be considered here in more detail, from a behavioral point of 
view.  This means that we will concentrate on the dynamic aspect of an 
algorithm.  In other words, what happens in the computer as it carries out or 
executes the algorithm.  This dynamic view of an algorithm is in contrast to 
the static view, which corresponds to the algorithm on paper or on the 
computer screen. 
As we study the behavior of an algorithm, we will be concerned with all 
possible paths that can be followed through its actions.  We will show and 
prove the equivalence of behavior of certain algorithms.
Although very simple, the Sequence form is extremely important, and will be 
considered again briefly.
Selection Forms, which we have already introduced, will be reviewed in this 
chapter and the equivalence of several different selections will be studied 
and verified using symbolic logic truth tables.
The behavior of Repetition Forms is considerably more complex than other 
forms.  In fact, Repetition Forms are the most complex form.  We will 
describe them using two-dimensional traces, so as to yield insight into their 
dynamic behavior.  Certain assertions about the state of a program are not 
changed by executing the body of a loop; these are known as loop invariants 
and are briefly introduced.  Later in this chapter, we will use loop invariants 
to improve programs.
We can view Invocation Forms as data-flow diagrams or black boxes, in order
to provide an easy and early introduction to an otherwise complex 
mechanism.
Here, we limit our consideration of nested forms to simple nests.  In the 
subsequent chapters we will consider larger programs and their design.

5.2 Programs
Data for Programs
The algorithms considered until now have been quite general, involving data 
that are as diverse as people, dice, cards, resistors, pebbles, triangles, 
recipes and money.



Programs are algorithms expressed in a form that can be carried out, or 
executed, by computers.  Any program has a limited set of data to 
manipulate.  Such program data can be represented by labeled boxes, called 
variables, that contain various types of data values.  The contents of these 
boxes may be examined, copied, or replaced, by the program as it executes. 
The physical realization of the boxes may be electronic, magnetic, chemical 
or other, but this aspect is relatively unimportant for programming.
A variable has the following three components:
• an identifier,
• a data type, and
• a value
Figure 5.1 gives a graphical representation of these three components.
Figure 5.1 Components   of a variable in a computer program
An identifier is a symbolic name that serves to label a programming variable.
In actual programs, it is a good idea to use descriptive variable names such 
as MinimumAge or CountOfSheep in order to make the programs easier to 
understand.  Here, in a few short sample programs, we sometimes use brief 
names such as X, Y, or Z as in algebra, for convenience.
A data type describes an item of data.  It indicates a range or set of values 
that the data item may have, along with the operations that may be applied 
to these values.  We could view the data type as the size or shape of the box 
containing a data value.  In this chapter, we will consider three main data 
types:  Integers, Real Numbers and Characters, some examples of which are 
shown in the following figures.
• When counting, thevalues are whole or integral numbers (such as 0, 1, 
2001, -7, etc.); they are of Integer type.  Integers could describe populations,
dice throws, days in a month or the age of people.  Actually, computers have 
a limit as to how large an integer can be.  This limit may be as small as 32 
768 or (215), but is usually much larger.  Integers will be the most common 
data type used in this chapter.
• When measuring, we obtain values that may be portions of a unit and 
usually have a decimal point; they are Real Numbers.  For example, the 
radius of a circle could be a Real Number.  The constant p (3.1415926535...) 
is also a Real Number.
Figure 5.2 Examples of Integer type data

Most Real Numbers can only be approximated by computers.  For 
instance, p has an infinite number of decimals while a Real Number variable 
in a computer has a fixed space to store fractional 



parts.  This means that longer values must be truncated.  For some Real 
Number values, the decimal notation may be awkward, so a scientific or 
exponential notation is often used.  Take, for instance, the MassOfElectron 
from Figure 5.3.  This number could be written in a more concise notation as 
9.11¥10-30, which means that there are 29 zeros between the decimal point 
and the 911.  This scientific notation is usually written in programs as 9.11E-
30.
Figure 5.3 Examples of Real Number type data
• Our next data type, the Character type is used in the process of 
communication.  A character is any single letter, digit, punctuation, or other 
symbol from a keyboard.  The character type would correspond to a box, 
holding only one single symbol selected from dozens on the keyboard as 
shown in Figure 5.4.  Character values will be indicated within single quotes, 
to eliminate confusion between values (such as ‘A’) and identifiers (such as 
A).
Figure 5.4 Examples of Character type data
There are also other data types such as the Logical type (also called Boolean 
type) that comes from decision-making, which comprises only two values, 
True and False.  Logical expressions are usually found as conditions in either 
the Selection or Repetition Forms.
Figure 5.5 Examples of other types
Other data types often used include the String type, consisting of a sequence
of characters, as shown in Figure 5.5.
Figure 5.6 Examples of two aggregate data types
Structured data may also consist of a collection or aggregate of individual 
values.  For example, an array of cards from the card trick example and the 
employee record from a personnel file first seen in Chapter 4 are shown in 
Figure 5.6.  Aggregate data types will be considered in Chapter 8.
Actions In Programs
The kind of operations or actions that can be performed on data depends on 
the type of the data, and this is why the operations are an implicit part of a 
data type.  For example, the logical operators AND, OR, and NOT only apply 
to Logical type values—they cannot apply to Real Numbers, Integers, or 
Characters.  On the other hand, Real Numbers and Integers may be added, 
subtracted, multiplied and divided, yielding results of the same type.  Such 
arithmetic operations cannot act on variables of Logical or Character types—
dividing two characters would be meaningless.
One of the most important operations in a program is the assignment, which 
operates on all data types.  The assignment is the process of giving a value 
to a variable, the act of putting some content into a 



box.  The assignment operation is represented by the phrase “Set Variable to
Value”, as in the following assignment:
Set X to 3
or alternately,
X ¨ 3
This puts the value 3 into the variable box labeled X.  If box X contained a 
value before this assignment, the old value is replaced by the new value 3.  
A more general assignment notation involves two variables as illustrated in 
Figure 5.7.
Figure 5.7 An Assignment example
The statement, “Set Y to X”, can be also read as “Y gets X” or “Y becomes X”
or simply “Y is assigned X.” It specifies that the value is to be copied from 
box X, and put into box Y, destroying the previous value of Y.  Assigning a 
value is a process of copying, not of moving this operation does not change 
the value contained in X.
Figure 5.7 shows a snapshot of the values of variables X and Y, both before 
and after the assignment.  If X had not previously been given a value, then 
this assignment would be meaningless.  If the value to be assigned is an 
expression (a mathematical formula), then that expression is evaluated, and 
its resulting value is assigned to the variable.
Figure 5.8 The Increment operation
The increment operation of Figure 5.8 shows how the value of variable Count 
is increased by a constant.  This action is often used to increment a counter 
and it can also be denoted by Increment Count by 1.  It should be viewed as 
one action, and not as a sequence of smaller actions:  get the value in Count,
add one to it, put the result back into Count.
Figure 5.9 Accumulating a Total
The operation of Figure 5.9, Sum or Accumulate, is a convenient operation 
where Value is added to the value in Total, thus accumulating a sum; it is 
equivalent to Increment Total by Value.
Other useful actions that do not directly use the assignment operator are 
Input/Output operations.  An Input operation allows an external value to be 
read into a variable, thus destroying any previous value of that variable.  
Similarly, the Output operation displays the value of a given variable, without
modifying that variable.
Common operations between data of the same type include the operations 
of comparison.  Usually such operations apply to numbers, but they also 
have meaning for characters.  Comparisons include checking relations of 
equality, superiority, inferiority, etc.  Characters are assumed to be in 
alphabetical (or lexicographic) order, so character ‘a’ is less than character 
‘b’.



Other actions on variables include special functions (such as finding the 
square root, or the trigonometric sine), which will be considered when they 
are encountered.

5.3 Sequence Forms
The simplest computer algorithms involve a sequence of actions executed 
one after the other, and the simplest Sequence programs involve actions 
that are all similar.  
Let’s take an example and suppose that the four variables North, South, East
and West represent four traffic densities:  the number of cars that travel 
North, South, East or West through some intersection in one minute.
Let’s design an algorithm to compute the average traffic density, Mean, of 
the four values North, South, East, and West.  This Mean value is a measure 
of the activity of the intersection that will be computed and printed out every
minute to show how the traffic density through the intersection changes with
time.  The value of Mean is obtained by summing the four values and 
dividing their sum by 4.
The Average algorithm, which computes this Mean, is shown at left of Figure 
5.10 with a trace of its execution at the right.  Suppose that the values of 
North, South, East and West were 20, 10, 40, and 30 respectively.  First, 
variable Sum is set to zero.  Then, the value in North is added to it, replacing 
the zero in Sum by 20.  At the third step, the value of South is added into 
Sum bringing it to 30.  Similarly in step 4, the value of East is accumulated 
bringing Sum to 70 and finally the value of West is added, ultimately yielding
a Sum of 100.  Finally, at step 6, this value of 100 is divided by 4 to yield the 
value of Mean, 25.
Figure 5.10 The Average algorithm
The trace of an algorithm is a series of “snapshots” of the data values as the 
various operations of the algorithm are executed.  A trace of the execution of
the Average algorithm is shown in Figure 5.10, with the data values shown to
the right of each step of the algorithm.  Since the values of North, South, 
East and West are not changed, they need not be repeated.  The query mark,
“?”, shown for the values of Mean, indicates that, at that point in the 
execution of the program, the value of Mean is unknown.  Traces will be very 
useful for studying the behavior of algorithms, especially the more complex 
ones.
Figure 5.11 Data and actions for Average
Figure 5.11 shows two kinds of structures.  On the left of the figure, the data 
structure comprises six variables or boxes, and on the right 



side of the figure the algorithm structure consists of six actions.  To average 
50 numbers with this method would require 52 data boxes (one for Sum, one 
for Mean, and one for each data item), and also 52 actions (one for 
initializing Sum, one for each accumulation, and one for dividing).  For large 
amounts of data, this sequential method is long and tedious.  Later, we will 
find a better way to accomplish this using the Repetition form.  For a few 
numbers though, this Sequence form of averaging is acceptable.
Although the Sequence Form in Figure 5.16 is correct, our simple traffic 
average could also be computed by using a single action:
Set Mean to (North + South + East + West)/4
The simple Average program of Figure 5.11 can be generalized by replacing 
the constant value of 4 by a variable Count.  This variable can be set to the 
actual number of values to average and used in the division.  We will see 
more on this in Chapter 6.
More Programs Using the Sequence Form
Pseudocode 5.1 shows a simple algorithm consisting of a series of 
assignments.  It describes the calculation of the full selling price, including 
sales tax, for some quantity of a single item.
Pseudocode 5.1 A sales program with comments
Another example, shown on Figure 5.12, is an algorithm that interchanges 
the values of two variables.  To do this, it uses a Temporary variable.  The 
purpose of the Temporary variable is to save the value of Variable1, which is 
replaced in step 2.
A trace of this Swap algorithm is shown at the right of the figure.  As we have
seen before, the trace consists of a series of snapshots of the values of the 
variables showing their change from “Before state” to the “After state”.  This 
trace could be made more general by replacing the constant values 5 and 7 
by markers like x and y that can represent any value.
Figure 5.12 Swap Algorithm
The Swap algorithm swaps the values of Variable1 and Variable2 using 
following three steps:

1. The value of Variable1 (7) is put into Temporary.
2. The value of Variable2 (5) is put into Variable1 (replacing the 7 

already in Variable1).
3. Finally the value of Temporary (7) is put into Variable2 (replacing 

the 5 already in Variable2).

5.4 Selection Forms
Simple Selection Forms
Our first example to illustrate Selection Forms will be based on finding an 
absolute value.  The absolute value of a number (positive 



or negative) is the positive value of the number without its sign.  A flowblock 
diagram of an algorithm, which produces the absolute value of a variable X 
and puts it into the variable Absolute, is shown at the left of Figure 5.13.  Its 
corresponding pseudocode is given at the right of the same figure.
Figure 5.13 The Absolute Value algorithm
If the value is negative, it is subtracted from 0 and the positive result 
assigned to Absolute.  If the value is positive, it is left untouched.  
Alternatively, the algorithm could have multiplied any negative value by -1, 
again resulting in a positive value.  Since multiplication on a computer is 
more complex and slower than subtraction, we will use the algorithm that 
uses subtraction.
Note that instead of subtracting X from 0 for negative numbers, we could 
have simply written Set Absolute to -X where the minus operator is put in 
front of the X.
The next examples that illustrate Selection Forms show two Maximum 
algorithms at the left and right sides of Figure 5.14.  They show two different 
ways of finding the maximum value of two variables, X and Y.
Figure 5.14 Maximum value
See Chapter 3, Figure 3.44 for a previous version of Maximum1.
• We have seen Maximum1 before.  It states that if X is greater than Y, 
then Max1 (the maximum value) is assigned the value X.  Otherwise, Max1 is
assigned Y.
• Maximum2 starts by assigning Y to be the maximum value, Max2.  
Then, it tests to see if Y was, in fact, the greater of the two values.  If this 
was not the case and X is the actual maximum, the algorithm assigns the 
value of X to Max2.  This example illustrates a commonly used method or 
paradigm of computing:  first make a guess, then correct it, if necessary.
To get a better understanding of what equivalence is, see Chapter 4, Section 
4.3.
The center of Figure 5.14 demonstrates the equivalence of Maximum1 and 
Maximum2.  It consists of a table showing all possible conditions (the three 
combinations of values of X and Y shown in the leftmost column).  For each 
of the three conditions, typical values for X and Y are chosen and the results, 
Max1 and Max2 of each algorithm, are evaluated.  If these results are the 
same in all three possible cases, then the algorithms Maximum1 and 
Maximum2 are equivalent.
These Maximum examples illustrate that algorithms having different 
structures can still have the same behavior.  In this example, one structure is
not particularly preferable over the other.



Let’s extend somewhat the Maximum algorithms we have just considered, 
into the three Big-Small algorithms, shown in Pseudocode 5.2.  These will 
return two results:  the maximum value Big, and the smallest value Small, of 
the two values X and Y.
Pseudocode 5.2 The Big-Small algorithms
• The algorithm BigSmall1 is very similar to the algorithm Maximum1, 
but with the result including the minimum value as well as the maximum 
value.
• The algorithm BigSmall2 is structured like the algorithm Maximum2, 
but extended to also find the minimum value.
• The algorithm BigSmall3 begins much like BigSmall2 by making an 
initial and arbitrary assignment to Big and Small.  Then, it tests to see if the 
assignment was correct and, if not, the values of Big and Small are swapped.
In order to swap the values, the final algorithm uses the sub-algorithm Swap,
which we defined previously in Figure 5.12.
All of these algorithms are more or less equivalent, but we must make sure 
by proving that they are equivalent without assuming it! Let’s look at the 
algorithm equivalence in more detail.
Proofs of Equivalence for Simple Selection Forms
Algorithms involving Selection Forms can be proven to be equivalent by 
testing them for all possible combinations of values, as we did for the 
Maximum algorithms in the previous section.  This process is similar to the 
“truth table” proofs of symbolic logic.  Let’s look at two simple algorithms 
involving a Selection of individuals based on age and sex.
Figure 5.15 Two algorithms involving Selection Forms
At the left and right of Figure 5.15 are two algorithms involving two 
Selections based on age and sex.  There are three actions Aged, Boy, and 
Child corresponding to three categories with the same names.  These 
algorithms could be used within a larger algorithm where Aged, Boy, and 
Child are actions that update counters.  For example, every girl could cause a
Children variable to be incremented, and every boy could cause both the 
Boys and Children variables to be incremented.
These two algorithms can be proved to be equivalent in behavior by creating 
a table of all possible combinations of conditions, and testing if the resulting 
actions are the same for both algorithms.
The truth table in the center of Figure 5.15 shows the table of combinations 
corresponding to the two algorithms.  In all four cases the two algorithms 
behave identically, and are thus equivalent.  Either one of these algorithms 
could be substituted for the other.



You may have noticed the difference between the two algorithms:  the first 
one uses nested Selections while the second one uses a sequence of two 
Selections.  Which algorithm should we prefer? The answer is not always 
clear.  Sometimes sequential Selections are preferred over nested Selections.
Figure 5.16 shows another example where nested Selections are compared 
with sequentially connected Selections.
Figure 5.16 Nested versus sequentially connected Selections
The table at center of Figure 5.16 shows all four combinations of the possible
conditions.  The first combination includes all ages from 12 to 21 inclusive, 
while the second includes all ages greater than 21, and the third includes all 
ages less than 12.  The last combination, however, (Age < 12 and Age > 21) 
can have no age that satisfies it; this logical combination is not physically 
possible and cannot happen, so it need not be considered.  All of the other 
conceivable combinations are possible, and produce identical results, so the 
algorithms are equivalent.
The test values shown are 18, 25, and 10, and are sufficient to trace all three
paths through these two algorithms (Increment Low, Increment High, do 
nothing) to prove their equivalence.  Other test values could also be used.  
For example, the test value of 18 corresponds to the condition where (Age < 
12) is False and (Age > 21) is also False, or to the equivalent condition where
(Age ≥ 12) and (Age ≤ 21) is True.  So, any age between 12 and 21 inclusive 
can replace the test age of 18.  Similarly, the test value of 25 can be 
replaced by any value larger than 21 and the test value of 10 can be 
replaced by any value smaller than 12 (but not by a negative age!).
Figure 5.17 Another proof involving Selections
Figure 5.17 shows yet another set of examples that have a form similar to 
the examples in Figure 5.16.  Nested Selections are compared with two 
Selections connected sequentially.  The two pairs differ, however, in their 
conditions.  The table of combinations, at the center of Figure 5.17, shows 
one combination (the last) where the behaviors differ.  This one case is 
sufficient to prove that they are not equivalent.
All the above examples involved only two Selections, so at most four 
combinations needed to be tested.  If an example involved three such 
conditions, then there would be eight combinations to test.  We will consider 
such an example next.
Larger Selection Forms
When people vote in meetings, they usually vote for or against some 
proposal, and the votes are counted so that a majority may be determined.  
Majority voting can be applied to a collection of two-



valued data with values 0 and 1, True and False, or Yes and No.  Let’s define 
an algorithm to act on three binary variables A, B, and C (each having the 
value 0 or 1) and to output their majority value.  A table describing the 
Majority algorithm is shown in Figure 5.18.
Figure 5.18 Specification of Majority Voting
We first encountered this algorithm in Chapter 3, Figure 3.16
In the above table, the combination of values (1, 0, 1) corresponds to the 
third line from the bottom of this table, which has an index number of 5.  
There are at least six possible algorithms that can produce the results 
specified by the table.  These algorithms are shown below in Pseudocode 5.3 
through 5.8, Majority Method 1 through Majority Method 6.
Pseudocode 5.3 Algorithm Majority Method 1
Majority Method 1 is based on a systematic and exhaustive enumeration of 
all possible values.  It involves a total of seven Selections (count them) to 
evaluate the 8 possible combinations.  The numbers 0 to 7 in the assertions 
in braces correspond to the index in the table of combinations in Figure 5.18. 
You might have noticed that this index corresponds to the binary number 
represented by the combination (for example, the 1, 1, 0 combination is the 
binary representation of number 6).
Pseudocode 5.4 Algorithm Majority Method 2
This second version simply accumulates in variable Sum the number of times
the value of 1 appears in the three cases.  Then, if the value of Sum is 
greater than or equal to 2, the value of Majority is 1, otherwise it is 0.
Pseudocode 5.5 Algorithm Majority Method 3
This third algorithm is shorter and simpler.  It has a single but complex 
Selection, which asks if the sum (A+B+C) is greater than or equal to 2 and if 
so, the Majority is set to 1, otherwise it is set to 0.
Pseudocode 5.6 Algorithm Majority Method 4
The fourth method (Pseudocode 5.6) involves three Selections.  The numbers
in the assertions show the indices of the 8 combinations indicating the paths 
taken.  Take note that all paths are not equally likely; half of the 
combinations take the path that includes the last pseudocode statement.
Pseudocode 5.7 Algorithm Majority Method 5
The fifth method involves nested Selections, all testing for the equality of 
variables.  Essentially, if any two of the three values are equal, then the 
value of Majority is that value.
Pseudocode 5.8 Algorithm Majority Method 6



This last algorithm, Majority Method 6, is the simplest.  It first asks if A=B, 
and if so, the value of Majority is A (or B).  Otherwise A and B “cancel one 
another” leaving C to determine the Majority.
It is interesting to notice the different conditions in each of the six methods.
• Some methods (1 and 2) compare a variable to a constant.
• One method (4) compares two variables for size.
• Some methods (5 and 6) compare two variables for equality.
• One method (3) uses complex conditions to make the comparison.
Finally, let us compare Majority Method 3 and Majority Method 6, which are 
simple and seem similar.  Majority Method 3 depends on the fact that the 
values are numeric and can be added.  Majority Method 6 makes no such 
assumption (the values to be compared can be characters such as T and F) 
which makes this method more general.
Extending the majority to five variables would be interesting.  Some of the 
six methods extend more easily than others.  Try to extend them all.
We will continue with a couple of majority algorithms and take a look at 
proofs, or verification of the correctness of algorithms.
Proofs of Equivalence for Larger Selection Forms
The more variables algorithms have, the more data combinations are 
possible.  For example, consider the two algorithms shown below, which 
claim to find the Majority.  The three variables A, B, and C each have one of 
two values, 0 or 1.  We have already called such variables “binary variables”.
Three binary variables yield a total of 23 or 8 possible combinations of 
values, as enumerated in the table shown in Figure 5.19.
As we have already noted, the values of A, B and C could represent the digits
of a binary number so that each combination corresponds to a unique 
number.  Thus, the combinations may be listed systematically as binary 
numbers zero through seven.
Figure 5.19 A right and a wrong way of computing Majority
The table in Figure 5.19 contains a column labeled Left, which shows the 
values of Majority evaluated by the algorithm on the left.  Similarly, a column
labeled Right shows the values assigned by the algorithm at right.  If these 
two “output” columns had the same value for all combinations, then the two 
algorithms would be equivalent.
However, they behave differently in one case (shown shaded), and that is 
sufficient enough to disprove the equivalence of these two algorithms.  In 
fact, only one of the two algorithms of that figure (the 



one on the left) is actually a Majority algorithm.  Notice that it is a 
modification of Majority Method 4 from Pseudocode 5.6.
The algorithm in Figure 5.19 involves three binary variables and requires 23 
rows in the table.  An algorithm which involves n binary variables, requires 
2n rows.  So for 10 binary variables, we would need 1024 rows and for 20 
variables, over a million rows.  When the number of variables becomes large,
this exhaustive method is exhausting!
Figure 5.20 Two ways of finding the maximum of three values
Figure 5.20 shows two algorithms for computing the Maximum of three 
values X, Y, and Z.  Let’s check if the two are equivalent.  If the values of X, 
Y, and Z are limited to binary values, then eight combinations would be 
required for the proof of equivalence.  However, if X, Y, and Z are integers, it 
seems as though we would need to test for all possible combinations of three
integer values—an infinite number—to show equivalence.  Luckily, since we 
are only interested in relative values, we can show equivalence by taking all 
possible orderings for X, Y, and Z.  Assuming that the three values are all 
different, there are only six possible conditions, as shown in the table in 
Figure 5.20.  Evaluating both algorithms for all of these combinations yields 
an identical behavior.
Another, less abstract, proof of equivalence can also be given using six sets 
of test values.  We have chosen 1, 2, 3 as test values.  Any other set of test 
values would have been just as good.
For example, the combination 10, 20, 300 gives the same results as 1, 2, 3, 
as does any other increasing sequence of three values.  A proof of 
equivalence is given in the following table:
If the problem specification allowed for some of the values to be equal, then 
more sets of combinations should be tested (such as 2, 1, 1 or 1, 2, 1, and so
on).  Can you guess how many?
Nested Selections
In the previous sections, we saw a few examples of nested Selections.  Let’s 
look closer to more examples of nested Selections in order to understand 
them better and to see if it’s possible to simplify them.
The following Grades algorithm, which assigns grades to students based on 
their percentage scores, might not be the best way to assign grades, but is a 
good example to illustrate many nesting concepts.  The specification for the 
Grades algorithm is as follows:

Grades:
A score of 90 to 100 gets a grade of ‘A’
A score of 80 to 89 gets a grade of ‘B’
A score of 60 to 79 gets a grade of ‘C’
A score of 50 to 59 gets a grade of ‘D’



A score of less than 50 gets a grade of ‘F’
The following algorithms, (Pseudocode 5.9 to 5.12) solve this problem in four 
different manners (Grades 1 to Grades 4).
The first method, Grades 1, tests the largest percentage range first, and 
tests each range in descending order until the proper range is found.  Once 
the proper range is found, the corresponding grade is output.
Pseudocode 5.9 The Grades 1 algorithm
The second method (Grades 2 in Pseudocode 5.10) is similar to method 1, 
but it starts from the smallest percentage range and tests each range in 
ascending order.
Pseudocode 5.10 The Grades 2 algorithm
The third method of assigning grades (Grades 3 in Pseudocode 5.11) 
compares TestValue to zero at each stage.  This way of doing things might be
useful for machine level programming since machines can compare values to
zero very easily.
Pseudocode 5.11 The Grades 3 algorithm
Unlike the previous three methods, which involve nested choices, the fourth 
method (Grades 4 in Pseudocode 5.12) involves no nesting but a series of 
choices.  This method is often simpler to program in older programming 
languages which have a limited IF structure.  Notice that this method 
requires the assignment of character values, while none of the other 
methods uses assignments.
Pseudocode 5.12 The Grades 4 algorithm
The four methods given here are not all the possible methods for the Grades 
algorithms; at least two other different structures are also possible.
For more details on the problem solving method, see Chapter 2, Section 2.2.
Whenever we define an algorithm, we should test it.  This is in fact step 4 
and part of step 5 of our problem solving method.  Testing algorithms is 
extremely important as errors can creep up even in simple algorithms like 
our Grades algorithms, and in fact, there is an error in one of them.
Our testing strategy is always to include a test value in each of the possible 
ranges as well as “limit” values.  Here, the ranges are defined by the five 
grades and suitable test values would be 95, 85, 70, 50, and 25.  Examples 
of limit values are 89, 90, and 91.
A good testing strategy will also include extreme or out of range values, like 
a negative grade, or a grade that is greater than 100.  Using these values, 
you will find that the algorithm Grades 3 (Pseudocode 5.11) contains an error
for grades higher than B! Constant 30 in the last subtraction should be 10!



These Grades algorithms could be improved so that the grade boundaries 
(50, 60, 80, 90) may be more easily altered.  The constant values 
representing these boundaries could be replaced by other symbolic values 
(LowD, LowC, LowB, and LowA), to which are assigned the constant values at
the beginning of the algorithm.  Then, if the grading “boundaries” change, 
they could be easily modified in one place, at the beginning of the algorithm,
rather than at various places throughout the algorithm.
Note: Pseudocode 5.12 contains an error.  It does not calculate grades higher
than B.  The constant 30, in the last subtraction, should be changed to 10.  
By using a good testing strategy, we can discover errors like these in our 
own algorithms.
The efficiency of algorithms describes the speed of their operation.  This 
speed, or time to execute an algorithm, could be determined by counting the
number of operations (such as Selections).  For example, the last algorithm 
outlined in Grades 4 always requires four Selections; every path through this 
algorithm must go through every Selection.  The other three algorithms 
require four Selections only in the worst case.  In general they involve fewer 
Selections.  Therefore, the fourth algorithm is less efficient than the others.
An analysis of efficiency also depends on the input values provided.  For 
example, given an input value of 95, Grades 1 requires only one Selection, 
whereas Grades 2 requires four.  Such an analysis should not be done for just
one value, but for a collection of values.  For example, if the grade 
distribution is high, then Grades 1 would be faster on the average.  On the 
other hand, if most grades were around 65, a better algorithm for such a 
distribution would test first for C grades.
Logical Conditions
For more information on Logical conditions, see Logical Data-Flow Diagrams 
in Section 3.4.  De Morgan’s First and Second Laws are also mentioned there.
The conditions we have used in our Selections are usually called Logical 
conditions because they can only be true or false.  The conditions we have 
used so far were simple, but we can define more complex conditions by 
using the three main connectives AND, OR and NOT, which we already 
encountered in Chapter 3, Figures 3.27 and 3.29.  Their behavior is specified 
by the truth tables of Figure 5.21.
Figure 5.21 Truth tables
Conjunction is a logical operation between two logical values Condition1 and 
Condition2, denoted as Condition1 AND Condition2.  For example, the 
following condition is true when I, J, and K contain values that are in 
increasing order:



(I < J) AND (J < K)
Using a compound condition with the AND operator can considerably simplify
the structure of an algorithm since it reduces the number of Selections used. 
Pseudocode 5.13 illustrates such an example by showing two different pieces
of pseudocode that are equivalent.
Pseudocode 5.13 Nested Selections and the AND connective
In higher level programming languages, this kind of tradeoff is usually 
possible.  However, in low level programming languages such as assembly 
languages, conditions often cannot be compounded and so, only simple 
conditions can be used.  The equivalence of two logical formulas can be 
proved by drawing the corresponding truth tables.
Logical operations OR and NOT, respectively called Disjunction and Negation,
are also defined by the truth tables of Figure 5.21.  Using these three logical 
operations, we can write any logical formula or expression.  As an example, 
let’s look again at De Morgan’s rules that we have already introduced in 
Chapter 3.
Figure 5.22 DeMorgan’s rules
To verify the first rule, consider this statement:
It is not true that either the pig is blue or the horse is green.
It is equivalent to:
The pig is not blue and the horse is not green.
Similarly, the second rule can be verified by considering this statement:
It is not true that both the pig is blue and the horse is green.
It is equivalent to:
Either the pig is not blue or the horse is not green.
This equivalence can be used in various ways, for example a complex 
condition controlling a loop could be replaced by a simpler one as shown in 
the pseudocode at the top of Figure 5.23.  Two NOTs and one AND are 
replaced by one NOT and one OR.  The bottom part of the same figure shows
the second De Morgan’s rule in the form of data-flow diagrams
Figure 5.23 DeMorgan’s rules
DeMorgan’s Rules can also be used to negate a formula.  To negate the AND 
of two variables, you simply OR the two negated variables.  You can see this 
at the bottom of Figure 5.23.  For example, the condition for remaining in a 
loop is the opposite of that for leaving a loop.  In the simple Dice game of 
Chapter 3 (Figure 3.41), this was the condition for looping (and throwing 
again):
(Total≠7) AND (Total≠Point)
The assertion after leaving the loop was just the opposite:
(Total=7) OR (Total=Point)



This results directly from DeMorgan’s second rule as the condition for leaving
the loop is the opposite (negation) of the condition for looping:
NOT ((Total≠7) AND (Total≠Point)) = (Total=7) OR (Total=Point)
The proof of DeMorgan’s first rule was shown in Chapter 3 without any detail 
(see Figure 3.29).  To refresh your memory, Figure 5.24 shows the detailed 
proof of the first rule.
Figure 5.24 Truth table proof of DeMorgan’s first rule
In this figure, the four rows correspond to the combinations of the possible 
truth values of P and Q.  The demonstration proceeds column by column (in 
the numbered order).  Finally columns 3 and 5, corresponding to the left and 
right sides of DeMorgan’s first rule, are seen to be identical.
Logical conditions which involve n logical variables can be proven equivalent 
by truth tables which contain 2n rows.  For example, let us consider the 
following logical distributive law:
A AND (B OR C) = (A AND B) OR (A AND C)
As these formulas involve three logical variables, there are 23 or 8 possible 
combinations.  The left side and right side of the expression are evaluated, 
and found identical in all cases as shown in Figure 5.25.
Figure 5.25 Truth table for distributive law
Notice that this distributive law for logical operations is equivalent to the 
distributive law of algebra:

a(b + c) = ab + ac
Using Logical Conditions to Simplify Selections
We have seen in the last sections that algorithms could be simplified by 
making their conditions more complex, as already illustrated in Pseudocode 
5.13.  This actually means that we can reduce the number of Selections in an
algorithm provided we compound the various conditions.  This trade-off can 
be further illustrated by the following Leap algorithms.
The first Leap algorithm (to determine whether a given year Y is a leap year) 
was introduced in Chapter 3 (Figure 3.2), and three different pseudocode 
versions were given in Chapter 4 (Pseudocode 4.1 to 4.3).  We repeat them 
here.
Pseudocode 5.14 Algorithm Leap 1 from Chapter 4
There are two possible paths through this algorithm leading to a leap year:  
when Y is divisible by 400, or when Y is not divisible by 100 and is divisible 
by 4.  Putting this symbolically leads to one larger condition we will call C1 
where the condition “Y D 4” means that Y is divisible by 4.
C1 = (Y D 400) OR (NOT(Y D 100) AND (Y D 4))



Pseudocode 5.15 Algorithm Leap 2 from Chapter 4
Again, the logic expressed by the pseudocode of Leap 2 can be reduced to a 
single logical expression C2:
C2 = (Y D 4) AND (((Y D 100) AND (Y D 400)) OR NOT (Y D 100))
If we note that (Y D 100) AND (Y D 400) can be reduced to (Y D 400) because
a value divisible by 400 is certainly divisible by 100, we can reduce C2 to the
following:
C2 = (Y D 4) AND ((Y D 400) OR NOT (Y D 100))
Convince yourself that this is correct.
Pseudocode 5.16 Algorithm Leap 3 from Chapter 4;
Here in Leap 3, the equivalent logical expression is C3:
C3 = ((Y D 100) AND (Y D 400)) OR 
(NOT (Y D 100) AND (Y D 4))
It can be also simplified:
C3 = (Y D 400) OR (NOT (Y D 100) AND (Y D 4))
You should verify C3 for yourself (looks like C1?).
All three of these Leap algorithms involve three separate Selections.  If the 
conditions were allowed to be more complex, like C1, C2 or C3, the resulting 
algorithm could be as simple as the following for Leap 1:
Pseudocode 5.17 New Algorithm, Leap 4
In fact, all of the Leap algorithms can be similarly simplified.

5.5 Repetition Forms
The Repeat-Until Form
Since computers are extremely good at repetitive tasks, algorithms based on
Repetition Forms are important in computing.  Repetition Forms in algorithms
are very often called “loops”, as we loop through the algorithm while 
executing it.  Note that a loop is more visible on a flowchart because an 
arrow has to loop back to an upper part of the diagram (look back at Section 
3.5 of Chapter 3 as well as at Figure 4.3 of Chapter 4)
Although there exist several forms for the loops, thus far we have used only 
the While form of the loop.  In this form, a test of the condition is made and, 
if the condition is met, the body of the loop is executed.  This process is 
repeated until the condition is found to be False when tested.
An alternative loop form, the Repeat-Until form first executes the body of the 
loop and then continues repeating—iterating —until the condition on which it
is based is found to be True when tested.  Figure 5.26 shows a comparison 
between the flowcharts of these two looping forms.



Figure 5.26 Comparison of flowcharts for While and Repeat-Until loop forms
Notice that the body of the Repeat-Until loop is always executed at least 
once, and that the same is not true for the While loop.  Another difference 
between the two forms is that the condition for termination of the Repeat-
Until loop is the negation of the condition for termination of the While loop.  
The reason for that difference is simple:  the While loop condition is a 
condition for looping, and the Repeat-Until condition is a condition for 
terminating the loop
To show the closeness of these two forms, we could build a Repeat-Until loop 
from the body of the loop and a While loop connected sequentially, as in 
shown in Pseudocode 5.18.
Pseudocode 5.18 Equivalence of Repetition Forms
The Repeat-Until loop always performs the actions in the body at least once, 
this makes it well adapted to specific situations.  However, the While form 
makes it possible for the body of the loop not to be executed if need be and 
this added control is usually preferred.
The behavior of a While loop is dynamic or moving as the actions of the loop 
body are executed repeatedly, whereas its structure is static.  We will 
illustrate this difference in Figure 5.27.  The pseudocode demonstrates the 
static form of an algorithm to calculate the remainder Rem of the integer 
division of a numerator Num by a divisor Den.  To the right of the 
pseudocode, the behavior of the While loop is shown as a series of actions 
forming a trace.  The numbers 14 and 4 were arbitrarily assigned to Num and
Den to demonstrate this trace.
The loop body Set Rem to Rem – Den is repeated while the condition Rem ≥ 
Den is True and the repetition ends when this condition becomes False.  This 
algorithm is generally known as the modulus operation.
Figure 5.27 Structure and trace of the Modulus algorithm
We have already seen that a trace is a series of snapshots showing the 
behavior of an algorithm.  In the trace of Figure 5.27 the result of each step 
is written directly to the right of that step in the algorithm.  This creates a 
series of iterations, each iteration being an execution of the loop body 
represented by a column in the trace.
This trace shows the Modulus algorithm being executed to find the remainder
of the division of 14 by 4.  The algorithm proceeds by repeatedly subtracting 
4 from 14 until the result is less than 4 (leaving a remainder of 2 in this 
example).
We will refine our traces to more convenient two-dimensional trace tables 
that will prove to be extremely useful.
Figure 5.28 Trace of the Divide algorithm



Figure 5.28 shows the Divide algorithm introduced in Figure 3.45, which 
divides a numerator Num by a divisor Den, yielding a quotient Quot and a 
remainder Rem.  The trace shows how 14 divided by 4 yields a quotient of 3 
and a remainder of 2.
This algorithm first inputs the values for Num and Den and then initializes 
Rem with the value of Num and Quot to zero.  The loop subtracts Den from 
Rem, counting the number of times it does this in Quot until Rem is less than 
Den.  Finally, Quot and Rem are output.
Trace tables, as shown in Figures 5.27 and 5.28, are very useful ways to 
study the dynamic behavior of algorithms.  A trace table is a two-
dimensional arrangement of boxes set up at the side of an algorithm in either
pseudocode or in flowblock form.  For each iteration, the loop creates a stack
of boxes showing the effect of the actions performed.  This two-dimensional 
trace can then be viewed both horizontally and vertically, as will be shown in
the following sections.
The Divide algorithm described here differs from the division operation 
available in most programming languages.  First, the division of two Real 
Numbers (written X/Y) yields another Real Number expressed with a decimal 
point.  Second, the division of two Integer values usually yields only the 
quotient, while the remainder can be obtained from the Modulus operation 
just described.
The Disadvantages of Using the Repeat-Until Form
Let’s consider creating an algorithm to find the Product of two non-negative 
integers X and Y.  The product is to be computed by successively adding the 
value X a total of Y times.  This algorithm for computing a product is not 
necessarily very useful because computers can multiply in a much more 
efficient manner.  However, it helps illustrate many ways of inadvertently 
doing things wrong, and of what happens when we try to correct them.
Pseudocode 5.19 An erroneous algorithm   infinite loop
This algorithm, Pseudocode 5.19, does not use the fundamental While loop 
form but instead uses the Repeat-Until form, where the test for termination is
made after executing the loop body.  Now, let’s see the unfortunate 
consequences of delaying the test until after the body has been executed!
This algorithm works well for most values, but not if Y is initially 0.  In that 
case, Y is first decreased to -1, then Y is tested to see if it reached 0.  But 
since Y has already passed 0, the algorithm keeps looping, and Y keeps 
decreasing forever! This is called an infinite loop and is a very common 
programming error.
Pseudocode 5.20 An erroneous algorithm   incorrect product
The revised version of Product A “fixes up” the infinite loop by leaving the 
loop when Y is less than or equal to zero (Pseudocode 



5.20).  This way, it does not loop forever, but it still does not compute the 
correct result for the case where Y=0.  For that case, the algorithm first sets 
Product to zero and then immediately increases it by X and halts.  So using 
this algorithm to multiply any value by zero does not yield a zero!
Pseudocode 5.21 An erroneous algorithm   Y value destroyed
In Pseudocode 5.21, Product B has been patched-up to handle the case 
where Y is zero by first testing for it, and immediately circumventing the 
loop.  But Product C still has a problem! By using variable Y as a counter, it 
destroys its original value.  This side effect may not always be harmful.  But 
if Y is to be used again later in the program that uses Product C, its value will
have been changed to 0.
For example, suppose Y represents a constant rate of pay— say $10 per hour
— that is to be multiplied by various numbers of hours X on successive 
invocations of Product C.  The first execution of Product C will yield a correct 
result but the value of Y will be set to 0.  Thus, all subsequent products of 
any X with Y will yield zero.
Pseudocode 5.22 The final, corrected algorithm   Product D
Pseudocode 5.22 finally fixes this side effect in Product C by first placing a 
copy of Y into the variable Count, and using Count, instead of Y, as a counter.
This algorithm finally works, but it is more complex and messy than it should 
be.  It is called a “kludge”—something that works for the wrong reasons.  
There is certainly no elegance here!
This process of trial and error followed by many fix-ups and more errors is 
entirely unnecessary.  Some prior planning and refinement, using the Four 
Fundamental Forms, could yield a better algorithm as shown in Figure 5.29.
Figure 5.29 Better Product Algorithm
The development of the algorithm, in Figure 5.29, starts out at a very 
primitive level by planning how the algorithm is to execute—essentially by 
writing a trace of the execution of the algorithm.  This “planing trace” starts 
by setting up not only a counter C equal to the multiplier (the number of 
additions to perform), but also a “dummy” variable D equal to the 
multiplicand (the value to add), and a product P that is initially zero.  Then 
the successive additions are shown as a series of accumulations.
A simple refinement of this is done by replacing the sequence of additions in 
the plan with a loop.  This is shown in the pseudocode at the center of Figure 
5.29.  Note that some more descriptive names have been given to the 
variables, Multiplier and Multiplicand.  This could be the final algorithm; there
is nothing more to it! By using the proper structures in the proper way we 
have created a better 



Product.  In fact, since we avoided wasting time fixing and patching, we 
could take some time to optimize the finished product.
The further refinement on the right of the figure shows an optimized Better 
Product, where the counter Multiplier is first chosen to be the smaller of the 
two values X and Y.  This way, the algorithm loops the fewest number of 
times.  Time is saved for the machine, but not necessarily for the human 
programmer.  Further optimization of this Better Product algorithm is 
possible, and we will discuss it at the end of this chapter.
The While Loop Form
Borrowing money usually involves interest-ing algorithms.  As an example, 
let us consider taking a loan of Amount dollars (say $6000) for Duration 
years (say six years).  Each year, Payment dollars (say $1000) are repaid and
the interest is calculated at Rate percent (say 10% annually) on the 
remaining Balance dollars.  This amount of interest is chopped off to the next
lower dollar (you can now be sure that this algorithm was not designed by a 
bank!).  All these numbers and conditions have been chosen for our 
convenience in making the trace.  Later, when using a computer, we can be 
more realistic (with 72 monthly payments).
After making the payments for Period years, there is still an amount to repay 
at the end; this amount is called the balloon payment, because it “balloons” 
into a much larger amount than we expect if the monthly payment is too low.
The problem is to compute the balloon payment.  You may wish to guess the 
value before reading on.
Figure 5.30 Top-down development of loan program
The development of the Loan algorithm is shown in Figure 5.30 as a top-
down breakout of three levels.
• The first level shows a very general view.  It consists of three steps:  
setting up, looping and then outputting the final balance (the balloon).
• The next level to the right refines each of these three blocks, but still 
not in detail.  It shows the loop explicitly and breaks out the actions within 
the body of the loop.
• The final level at the right of the figure shows even more details of the 
setup and of the loop body, as pseudocode fragments.
Figure 5.31 Loan repayment algorithm and trace
The trace of the Loan algorithm is shown as a two-dimensional table form in 
Figure 5.31.  This trace shows a solution of $2912 as the balloon payment.  It
is almost half the loan amount!
The trace also shows yet another way of computing this balloon payment 
and so can serve as a check on the answer.  It results from realizing that, 
after the six payments of $1000, the entire loan 



amount has been paid off and the balloon payment is due only to the 
interest.  The total interest can be determined by summing the Interest 
computed each month:
600 + 560 + 516 + 467 + 414 + 355 = 2912
This corresponds to summing the second row of the trace (shown shaded).  
Be sure to note that this alternative method works only if the sum of the 
payments alone equals the amount borrowed.
Notice that if the yearly payment is $600 (equal to the interest), then the 
balloon payment equals the original loan amount (of $6000), regardless of 
the duration! This is called an “interest-only” loan.
Figure 5.32 State trace for the Loan Program
A shorter form of the algorithm trace, called a State trace, is illustrated by 
Figure 5.32.  The state trace shows only the really relevant variables:  
Balance and Time.  These two variables are essential to the algorithm; 
should the process be interrupted at any stage, it is possible to continue it if 
only these two variables are known.
Getting Insights   Using Traces and Invariants
The trace of an algorithm can yield many insights.  Oftentimes, a study of 
such a trace will show an error in an algorithm.  When no errors are detected,
the trace might suggest improvements or even spark an idea for an 
alternative algorithm.  Traces also might show useful relationships among 
variables.  We will illustrate these concepts throughout the rest of this 
chapter with a number of examples.
The Odd Square algorithm was introduced in Chapter 3, Figure 3.9.
Our first example, the Odd Square algorithm, shown in Figure 5.33, finds the 
square of any integer Num by summing the first Num odd integers.  The 
algorithm has three parts
• Initialization:  The starting values are assigned to the variables.
• Loop:  The value of the square is calculated by summing a sequence of
odd numbers.
• Output:  The calculated value of the square is output.
Figure 5.33 The Odd Square algorithm and traces
Two-dimensional tracing, in the form of a table, is shown at the top of Figure 
5.33.  For each run through the loop, called an iteration, there is a new 
column of values added to the right side of the table.  This tracing table may 
be viewed both horizontally and vertically.
Horizontal views of the computation correspond to the iteration by iteration 
computation of each variable, as specified in the algorithm.  The trace table 
in Figure 5.33 essentially shows horizontal views.  At each stage, Square is 
incremented by OddNum, OddNum is incremented by 2 and Count by 1.



Figure 5.34 shows the horizontal slices that correspond to each variable.  
Notice that the Square of the numbers 1 through 5 are computed before the 
final square of 6.
Figure 5.34 Some horizontal slices
Vertical views consider each stage separately and show all the variables at 
each iteration, as shown in Figure 5.35.
Figure 5.35 Some vertical slices
We have said that observing a trace often reveals relationships among 
variables.  In our Odd Square example, at each iteration, adding Square and 
OddNum yields the square of Count:
After iteration 1, 1 + 3 = 2¥2
After iteration 2, 4 + 5 = 3¥3
After iteration 3, 9 + 7 = 4¥4
....and so on.
In general:

Square + OddNum = Count ¥ Count
Some assertions about the state of a program (such as the one above) are 
unaffected by the execution of the body of a loop—if the assertion is true 
before execution of the body, it will still be true after its execution.  Such 
assertions are called loop invariants.  As an example, Pseudocode 5.23 
repeats the pseudocode loop of the Odd Square algorithm, this time 
including the invariant between braces.
Pseudocode 5.23 Loop from Odd Square algorithm
It is important to realize that an assertion may not be true at a point part of 
the way through the execution of a loop body.  The reason for this is because 
only some of the variables used in the assertion may have been changed.  
Once the body has been completely executed, the assertion is true again; 
the relationship among the variables is constant, or invariant.
For example, in the above loop, the assertion is no longer true after the first 
statement in the loop body has been executed.  It does not become true 
again until after the third statement has been executed.
Further observation of the trace of Figure 5.33 yields two more formulas that 
hold at every stage, giving us three invariants for the same loop:
• Square + OddNum = Count ¥ Count
• Square = (Count - 1)2, and
• OddNum = 2 ¥ Count - 1.
This last relation between OddNum and Count suggests that the use of both 
of these variables is not necessary.  In fact a simpler algorithm with only one 
of these variables, Count, is possible.  Try it.
In the Odd Square example there were many invariants, and they were 
rather easy to observe.  In general, loop invariants are not 



always easy to find and there is no foolproof technique for finding them.  
Loop invariants are very important because they precisely describe the 
action of the loop in which they appear.  Sometimes, they provide the 
essential piece of information that allows us to understand the action of the 
loop.  As an example of this, let’s look at the Go Stone game as described in 
Figure 5.36.
Figure 5.36 Specifications of the Go Stone Problem
Each iteration of the loop reduces the number of stones in the box by one.  
The loop will terminate when there is exactly one stone left in the box.  The 
question for you to answer is:  by counting the number of black and white 
stones in the box before the algorithm is executed, is it possible to know the 
color of the final stone that will be left in the box when the loop terminates? 
Before reading on, try to solve this problem yourself.
Let us examine the way in which the number of stones is reduced:
• If a matching pair of black stones is removed, then one black stone is 
put back into the box, the number of black stones is reduced by one and the 
number of white stones stays constant.
• If a matching pair of white stones is removed, a black stone is put back
into the box, the number of black stones is increased by one and the number
of white stones is reduced by two.
• If a non-matching pair is removed, a white stone is put back into the 
box and the number of white stones remains unchanged while the number of
black stones is reduced by one.
Thus, the number of black stones always changes by one at each iteration 
while the number of white stones either remains constant or is reduced by 
two.  This means that, if we started with an even number of white stones, 
there will always be an even number of them; if we started with an odd 
number of white stones, there will always be an odd number of them.
In other words, the parity of the number of white stones is invariant; this is 
our loop invariant.  The only way that we can finish with a single white stone
—an odd number of white stones—is if we start with an odd number of white 
stones.  If we start with an even number of white stones, the last stone will 
be black.  The only way that we can understand the loop well enough to 
make this statement is through the use of the loop invariant.
Later, in Section 5.7, we will show how we can use loop invariants to improve
algorithms.  Finally, note that loop invariants are also used to formally prove 
the correctness of algorithms.
When we evaluated the trigonometric sine function in Chapter 3, we used 
the Factorial mathematical function.  Factorials are also used in 



probability, statistics and counting problems.  The Factorial of any non-
negative integer N is written as N! and defined as follows:
N! = N ¥ (N – 1) ¥ (N – 2) ¥ (N – 3) ¥ ...  ¥ 3 ¥ 2 ¥ 1
Because multiplication is commutative, the products can be done in either 
increasing or decreasing order as...
5! = 1 ¥ 2 ¥ 3 ¥ 4 ¥ 5 or 5! = 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1
Figures 5.37 and 5.38 illustrate these two different algorithms.  Fact1 
multiplies products in increasing order while Fact2 does so in decreasing 
order.
Figure 5.37 Trace of the Fact1 algorithm for N = 5
Fact1, of Figure 5.37, initially sets Fact and Count to 1, and then loops as long
as Count is less than or equal to the input value N.  In the loop body, Fact is 
multiplied by the value of Count and Count is incremented.  When Count is 
incremented past N, the loop is terminated and the final value of Fact is 
output.
The trace shows this computation for an input value of N = 5.  You will 
quickly notice that as Count increases gradually, the value of Fact increases 
dramatically.  Just doubling the value of N to 10 would produce an output 
value of 3 628 800.  Such a computation can quickly exceed the bounds of 
any computer, so we must beware of computing the factorials of large 
numbers.
If we observe this trace and extend it, the following two loop invariants 
become apparent:
• Count! = Fact ¥ Count, and
• Fact = (Count - 1)!
These two relations can be combined into a third relation:
• Count! = Count ¥ (Count - 1)!
This is a definition of factorial in terms of itself.  Such a definition is called a 
recursive definition and will be discussed in Chapter 7.
Figure 5.38 Trace of the Fact2 algorithm for N = 5
The algorithm Fact2, of Figure 5.38, proceeds in the opposite way from Fact1.
It starts the Count at the value of N, and loops, decreasing this value until it 
reaches zero.  During each loop, it multiplies Fact by the decreasing value of 
Count.  Figure 5.38 presents a trace of this algorithm as well.
Observing this trace, we see what at each stage the following invariant 
holds:
N! = Fact ¥ Count!
Note: It is interesting that since the loop invariant holds true even when 
Count = 0, the factorial of 0 must be 1.
Notice that this loop invariant for Fact2 is very different from the previous 
invariant for Fact1.  This is normal since different ways of computing the 
same value may lead to different loop invariants.



If the condition Count > 0 were incorrectly written as Count ≥ 0, the output 
of Fact2 would be zero because Fact is finally multiplied by the lowest value 
of Count, which in that case would be zero.  This is the error of one iteration 
too many, and is usually called a one-off error.  Slight errors like this one can 
result in much larger errors in the final results.  Tracing helps find these 
errors.  The one-off error is one of the most common errors in programming.
Two-dimensional tracing is useful in many ways:
• Tracing yields insight into the dynamic behavior of algorithms.
• Tracing detects errors (such as the one-off error just mentioned).
• Tracing yields interesting relations among variables.
• Tracing suggests alternative algorithms.

5.6 Invocation Forms
Sub-algorithms (or subprograms) are simply algorithms that have been 
packaged into single units that may be used in other algorithms, as any 
other action is.  Sub-algorithms hide data and actions internally and so 
appear simple externally.  When a sub-algorithm is used as an action in 
another algorithm, we say that it is “called” or “invoked”.  In pseudocode, 
this is done by giving its name and listing the data that it must use.
Figure 5.39 shows a data-flow diagram of Max, a sub-algorithm that finds the 
maximum of two values.
Figure 5.39 Data-flow diagram for the sub-algorithm Max
In this view, a black-box view, we show all that is needed in order to be able 
to use Max—we see that it takes in two data values and passes out the 
maximum of these two.  In the following small piece of pseudocode 
(Pseudocode 5.24), the two values X and Y are input, the sub-algorithm Max 
is invoked to find the larger of X and Y, this value is assigned to Bigger and, 
finally, Bigger is output.
Pseudocode 5.24 Input X and Y and invoke Bigger sub-algorithm
Figure 5.40 shows the data-flow diagram and the pseudocode for an 
algorithm that makes use of sub-algorithm Max three times to find and 
output the maximum of four input values A, B, C, D.
Figure 5.40 Data-flow diagram and Pseudocode to find maximum of four 
values
This notation is similar to the following function in algebra which reads “M is 
the maximum of x and y.”

m = Max(x,y)
The power of the sub-algorithm comes from its ability to hide the details of 
how the maximum value is computed, thus simplifying the 



algorithm that uses it.  If all the details were shown, the pseudocode in 
Figure 5.40 would resemble Pseudocode 5.25.
Pseudocode 5.25 Unsimplified version of Maximum 4
The version in Pseudocode 5.25 is much more complex.  Here, the reader 
must examine the details carefully to see that the same method is used each
time to find the maximum of two numbers.  If such a degree of simplification 
can be achieved for such a trivial sub-algorithm as Max, imagine the 
improvement in clarity that can be obtained when a complex sub-algorithm 
is involved! This process of reducing the complexity by hiding the details is 
called abstraction.
Seconds Example
Suppose you were asked to convert a given number of seconds (say Time = 
1 000 000 seconds) into days, hours, minutes and seconds.  You could 
proceed as follows:

1. Divide Time by the number of seconds in a day (86 400), yielding
a quotient, the number of Days, and also yielding some remaining number of
seconds in Seconds.

2. Then this remainder is divided by the number of seconds in an 
hour (3 600), yielding the number of Hours and some remaining Seconds.

3. Finally, the above remainder is divided by the number of seconds
in a minute (60), yielding a quotient that is the number of Minutes and a 
remainder that is the number of Seconds.
Figure 5.41 Data-flow diagrams for the Div and Mod sub-algorithms
To do this, we make use of two sub-algorithms, Div and Mod, which are 
defined by the data-flow diagrams shown in Figure 5.41.  Note the assertions 
about the data values that Div and Mod work with.  In both cases the 
Numerator and Divisor must be positive integers.  In addition, the Divisor 
cannot be zero because of the mathematical commandment:

“Thou shalt not divide by zero!”
Figure 5.42 Algorithm Convert Seconds
The algorithm Convert Seconds of Figure 5.42, shows a data-flow diagram 
and corresponding pseudocode for the algorithm just described.  Remember 
that products such as 60 ¥ 60 ¥ 24 need not be evaluated by us; computers 
can do that.
De-militarize Time Example
As another example of the invocation form, let’s take a look at military time 
and the problem of finding a military time difference.  As you know, military 
time is expressed as an integer between 0 and 2400.  However, the 
difference between two times given in military form cannot be found by 
simply subtracting the two military times.  



For example, the military times 1400 and 1350 do not have a 50 minutes 
difference (1400 - 1350 = 50), but only a 10-minute difference.  This is not a 
problem with the 24-hour form of time but with the use of a base 10 
representation for a number that is not pure base 10.  We would have a 
similar problem if we tried to represent a person’s height by the integer 511 
instead of 5’ 11”.
If each of the military times is converted to minutes past midnight, then 
these numbers of minutes can be subtracted.  An algorithm to compute this 
military time difference is shown in Figure 5.43.  It includes Invocations of a 
conversion sub-algorithm that is similar to the Convert Seconds algorithm we
have just seen.
Figure 5.43 Time Difference algorithm with Invocations
If what we really want is the minimum difference between any three military 
times, we can proceed as indicated on Figure 5.44.  We use TimeDifference 
as a sub-algorithm that we invoke three times, after which we invoke a sub-
algorithm, MinDiff, to find the minimum of three values.
Figure 5.44 Minimum time difference
Note that TimeDifference is invoked with three variables, the last one being 
used to return the result of the sub-algorithm execution.
Pseudocode 5.26 Invoking the TimeDifference sub-algorithm

5.7 Improving Programs
Nested Loops and Selections
Until now, the algorithms of this chapter involved only simple forms.  Here 
we will consider some combinations of the Four Fundamental Forms, but we 
are mainly interested in tracing these more complex structures.  Their design
will only be considered in Chapters 6, 7, and 8.
Our first combination example computes the greatest common divisor of two
integers, that is, the largest integer that divides both of them.  For example, 
the greatest common divisor of 111 and 259 is 37.  The Greatest Common 
Divisor algorithm was first created by Euclid, in about 300 BC.  (algorithms 
did not wait for computers!) Figure 5.45 presents the Greatest Common 
Divisor (GCD) algorithm as an algorithm that illustrates the nesting of a 
Selection form inside a Repetition form.
Figure 5.45 The Greatest Common Divisor algorithm and trace
The result and the trace of the Greatest Common Divisor algorithm are also 
shown in Figure 5.45.  One use of the Greatest Common Divisor is for sharing
or partitioning two kinds of “whole” items, such as pebbles or cans of goods, 
that cannot be split further.  For example, if we have 111 cans of one kind of 
item and 259 cans of 



another kind, then the largest number of identical piles of cans equals the 
Greatest Common Divisor, which is 37.  Each of the 37 piles would have 3 
cans of one type (111/37 = 3), and 7 cans of the other type (259/37 = 7).  
There are many other uses of the Greatest Common Divisor, but they are 
usually more complex.
Our next example is an algorithm that converts decimal integers into their 
equivalent binary form.  Figure 5.46 shows this conversion algorithm 
together with its trace.  We can see, for example, that it converts the decimal
number 13 into the binary number 1101.
Figure 5.46 The convert decimal to binary algorithm and trace
Notice first the following binary “break-up” of the number:
13 = 1¥23 + 1¥22 + 0¥21 + 1¥20 = 1¥8 + 1¥4 + 0¥2 + 1¥1
This algorithm does the conversion by extracting various powers of 2, 
starting from the highest power and decreasing by a factor of 2 during each 
loop.  Here the algorithm starts from the power of 2 just higher than the 
number to be converted; to convert 13, it starts with Power = 16.

1. There is no 16 in 13, so the output is 0.
2. There is an 8 in 13, so the output is 1 and there remains 5.
3. There is a 4 in the remaining 5, so the output is 1 and there 

remains 1
4. There is no 2 in the remaining 1, so the output is 0.
5. There is a 1 in the remaining 1, so the output is 1 and there 

remains 0.
The resulting output sequence 01101 is the binary equivalent of 13.
For larger values, this algorithm cannot start with Power = 16, but with a 
power of 2 that is just larger than the number to be converted.  This could be
done with a separate sub-algorithm, that we could call Initialize Power.  It 
would start with Power equal to 2, and would loop, each time doubling Power 
until Power exceeded X.
Our next example is a simple multiplication algorithm that will help us 
illustrate the nesting of a Repetition form within a Selection form.
Figure 5.47 Signed Product algorithm and trace
Figure 5.47 shows the multiplication algorithm for two integers that may be 
positive or negative.  In this example we can find two While loops nested in 
the two parts of a Selection.  The trace illustrates the dynamics of the Else 
part of the Selection since the first value to multiply is negative.  As in the 
preceding conversion algorithm, we use an extra variable, Temp, to avoid 
modifying the original value of variable X.
See Pseudocode 4.10 for a detailed Make Change algorithm.



Change may be made in many ways, illustrating many combinations of 
forms.  In Chapter 4 we designed an algorithm to Make Change.  Let us 
consider now a slightly modified version of Change Maker, which provides a 
count of the quarters, nickels, and pennies in exchange for a dollar when 
buying an item for Cost cents.  In this version we chose to have no dimes or 
half-dollars involved.
Pseudocode 5.27 Modified version of Change Maker
The algorithm in Pseudocode 5.27 uses the method of subtraction and is very
similar to the previously described method of Chapter 4.  It consists of a 
series of loops, starting at the higher denominations (quarters), and 
subtracting away these denominations, counting as it proceeds.
Let’s look now at another version of Change Maker.
Pseudocode 5.28 Second new version of Change Maker
The second algorithm, Pseudocode 5.28, is still based on the method of 
division.  It makes use of the fact that a division of integers gives an integer 
quotient.  This version of Change Maker is essentially the same as the 
previous method.  It simply recognizes that the previous method was really 
doing division in disguise.
The next version we will develop will be based on addition and close to the 
actual method used by cashiers.
Pseudocode 5.29 Third new version of Change Maker
The third version in Pseudocode 5.29 corresponds to the way people usually 
prefer to make change, for it involves only addition.  Here, the algorithm 
starts with the value Cost and the lower denominations; pennies are first 
added until Sum is a multiple of 5.  Note that the test for Sum to be a 
multiple of five makes use of the Mod function of Figure 5.41 which gives the 
remainder when Sum is divided by 5.  When this remainder is zero, Sum is a 
multiple of 5.  Then nickels are similarly added until Sum is a multiple of 25.  
Finally, quarters are added until Sum reaches a dollar.
Let’s rewrite our Change Maker algorithm one more time using a different 
combination of forms; this time with Selections nested within a Repetition.
Pseudocode 5.30 Fourth Change Maker using nested forms
The fourth version of Change Maker, Pseudocode 5.30, is written as a single 
loop, having nested Selections within it.  Other than that, this method is 
quite similar to our first method of subtraction; it simply trades off a series of
Repetitions for a nest of Selections.
Each of these four methods can very easily be extended to include more 
denominations such as dimes, half-dollars, two-dollar bills, and so on.  They 
could also be extended to accept any amount tendered instead of assuming 
that it is $1.  But if you try these extensions, you 



will find that some of these methods extend much more easily than others.
These are not the only methods for making change for other methods of 
making change are still possible.  We will see more about change-making in 
Chapter 7.
Using Invariants
We have seen earlier that loop invariants were any assertions (relations, 
conditions, equations, etc.) whose truth is unaffected by the execution of the 
body of the loop.  We will use loop invariants here to try and improve the 
speed of algorithms.
Note: Loop invariants are the same before and after loop execution, but not 
necessarily during.
As an example, consider the algorithm which calculates the product of two 
positive numbers, shown in Figure 5.48.
Figure 5.48 The Positive Product algorithm, version 1
The loop invariant in the Positive Product algorithm of Figure 5.48 is:
(1) X ¥ Y = Product + Multiplier ¥ Multiplicand
This invariant has an intuitive meaning here.  The product of X and Y at any 
point is determined by summing the partial Product and the remaining 
portion Multiplier ¥ Multiplicand that is yet to be added into Product.  This 
breakdown into two parts (an already computed part, and a part yet to be 
computed) is often useful for determining invariants.
A significant aspect of loop invariants is that the actions within the body of a 
loop do not change the invariant.  For example, these are the actions within 
the loop:
Add Multiplicand to Product
and...
Decrement Multiplier.
These two actions could just as easily have been written as follows:
Set Product to Product + Multiplicand
and...
Set Multiplier to Multiplier - 1
Substituting these two into the original relation produces what is shown in 
Pseudocode 5.31.
Pseudocode 5.31 From one iteration to the next
This yields again the original invariant! The invariant holds at the beginning 
of the body of the loop, and also at the end of it.  In other words, this relation
remained invariant after execution of the complete body of the loop.  The 
adjective “complete” is important here, since the invariant relation is not 
necessarily true part way through the execution of the loop body.  This point 
is extremely important in the following discussion.



Note In this example, both assignments must be added to the loop body 
together and in order for the invariants to hold.  You can’t add one without 
the other.
Given the invariant relation (1), it is interesting to see whether we can find 
other assignments that could be added to the body of the loop and that 
would keep the given relation invariant.  Here is one such pair of 
assignments:
Pseudocode 5.32 Other equivalent assignments
In other words, if Multiplier is halved and Multiplicand is doubled, their 
product will remain the same.  And incidentally, this halving and doubling is a
faster way of finding the product than is the previous method, of adding a 
single Multiplicand and subtracting one from Multiplier.
Let’s apply our new knowledge and develop a new Product algorithm.  Of 
course, this halving can only be used if Multiplier is an even number so that 
we do not lose one turn in our Repetitions.  So for odd numbers, we will still 
use the original pair of actions.  If we then modify the body of the loop of 
Figure 5.48 to choose between these two pairs of assignments (both of which
keep the relation invariant), we obtain a more efficient product algorithm as 
shown in Figure 5.49.
Figure 5.49 The Positive Product algorithm, version 2
Note that we have written the original two actions in a slightly different (but 
equivalent) way.  Also, the doubling of Multiplicand was done by an addition 
so as to be more efficient, and above all so as to avoid using the product we 
are defining! A slightly more efficient algorithm is given in Figure 5.50, where
we double and halve during every iteration.
Figure 5.50 The Positive Product algorithm, version 3
The efficiency of these algorithms can be illustrated by considering the 
product of two numbers as big as a million.  Version 1 would make about 1 
000 000 loops, Version 2 would make about 40 loops, and Version 3 would 
make about 20 loops! If the time difference from 1 000 000 to 20 does not 
impress you, think of these numbers as money!
Notice particularly that we achieved this efficiency because of changes 
caused by rather simple algebraic manipulation of the loop invariant.  This 
should convince you that the loop invariant is a very useful concept.

5.8 Review   Top Ten Things to Remember
1. In this chapter, we have considered the dynamic behavior of 

algorithms, as opposed to their static structure as seen in 



Chapter 4.  The algorithms which are intended for execution by computers 
are called programs.

2. Algorithms manipulate data which are stored in variables.  The 
concept of data comprises both value and type.  A variable is viewed as a 
labeled box containing a value of some type.  In this chapter, types were 
mainly limited to numbers:  Integer and Real Numbers.

3. Actions involving data include assignment, input, output, 
comparison and various arithmetic operations.  These simple actions can be 
combined to yield complex actions and algorithms.

4. Sequence Forms are quite simple, and can replace some of the 
other structures.  This shows in particular that different structures can have 
the same behavior.

5. Selection Forms are capable of more complex behavior, as they 
make it possible to define several alternative paths through the actions of 
the algorithm.  But you should remember that the class of all possible paths 
through the algorithm is finite.  It is possible to compare two Selection Forms 
and determine equivalent behavior by comparing all paths.

6. Repetition Forms have considerably more complex behaviors.  
This behavior is best described by a form of tracing that produces a two-
dimensional typical path.  Tracing yields insights into dynamic behavior by 
showing a typical trajectory, by helping detect errors, by yielding interesting 
relations among variables and by suggesting other equivalent algorithms.

7. Loop invariants are relations whose truth is unaffected by 
execution of the body of the loop.  They are useful for providing some 
insights into algorithms.  They can also be used to both prove and improve 
programs.

8. Sub-algorithm forms were introduced by data-flow diagrams 
describing their behavior.  They emphasize higher level views:  what is being 
done, rather than how it is done.

9. The use of sub-algorithms is helpful in simplifying algorithms by 
hiding the details of what happens in the sub-algorithm; this is known as 
abstraction.

10. This chapter introduced the most fundamental concepts of 
computing.  The following five chapters are simply extensions of these 
principles.

5.9 Glossary



Character:  A data type whose values are textual symbols such as letters, 
digits, punctuation marks together with other symbols used to control spatial
arrangement or text, such as tabs and end of page.
Identifier:  A symbolic name that is used to refer to a programming entity 
such as a sub-program or variable.
Infinite Loop:  A repetition form whose condition is never met:  the loop 
keeps looping.
Instruction:  A single action in a program.
Iteration:  A single execution of the body of a repetition form.
Kludge:  [Pronounced “klooj” and said to be from Yiddish klug ∫ “smart”.] An 
attempt to fix a programming error by modification of the symptoms of the 
error rather than the logical cause for the error.  If the fix is successful, the 
program works, but for the wrong reasons.  By extension, applied to a 
program that has been fixed in this way and is thus devoid of elegance.
Loop invariant:  An assertion whose truth is not changed by the complete 
execution of the body of a loop.  Thus, if the assertion is true before the loop 
is executed, it will still be true after the loop has terminated.
Paradigm:  A model or template for a design.
Scientific notation:  A method of expressing real numbers as a decimal 
number x in the range 1.0 ≤ x ≥ 10.0 and a multiplier that is some power of 
10, for example, the speed of light is 3.10¥1010 centimeters per second; 
expressed in many programming languages as 3.0E10.
Side effect:  A consequence, frequently unwanted and unexpected, of an 
action in a program that is not connected with the goal of the action.  A 
common example is the change in the value of a variable within a sub-
algorithm resulting from assignments outside the sub-algorithm.
State trace:  A trace where the values shown are restricted to as few as 
possible to show the program’s action.
Trace:  A sequence of “snapshots” of a program’s data values showing the 
effects of the program’s execution.

5.10 Problems
Mid:  The Middle Value
The middle value of an odd number of different values is that value which 
has as many values lower than it, as it has higher than it.  It is not the 
average value.  For example, the middle value of the three integer values 3, 
6 and 5 is 5.
There are many ways of finding the middle value; some of these ways follow.



1. Mid Data-Flow Diagrams
Prove (or disprove) that the following data-flow diagrams compute the Mid 
value of the three input values A, B, C.
Problem 1
2. Mid Tree
The given tree corresponds to a nasty nest of Selection Forms.  Fill out boxes 
at the right so that M is assigned the middle value of the three values A, B, C.
Show assertions at branches of the tree.
Problem 2
3. More Mids
Create an algorithm (flowblock diagram, pseudocode, and so on) that is 
simpler than the tree of Problem 2, having fewer nests (only 3 simply 
nested), but involving more complex conditions.
Create another Mid3 algorithm from flowblocks by using Sum and Difference 
blocks also.
4. Others
Redo the tree of Problem 1 to find the maximum of three values, and then 
redo it again to find the minimum of three values.  Finally, redo it to sort 
three values.
How many tests are necessary to prove the equivalence of the Mid of five 
different values?
How many tests are necessary if some of the five values could be the same?
5. Simple Sequence Form
Indicate briefly what the following sequence of Set statements (A ¨ B is 
equivalent to Set A to B) does, in general, with inputs A, B and output C.  
Explain what, not how.
a. A ¨ A + B b. A ¨ A - B c. A ¨ A - B

B ¨ A + B B ¨ A - B B ¨ B - A
C ¨ A + B C ¨ A + B C ¨ A ¥ B

6. More Sequences
Describe briefly what the following algorithms do (but not how they do it).
a. A ¨ 2 b. E ¨ A c. Z ¨ A

B ¨ A + A A ¨ B Z ¨ B + Z + Z
C ¨ B + B B ¨ C Z ¨ C + Z + Z
D ¨ C + C C ¨ D Z ¨ D + Z + Z
E ¨ D + D D ¨ E Z ¨ E + Z + Z

7. Charge Again
Create an algorithm to compute a charge C, given by the formula:

C = 4 ¥ K + 6 ¥ A



for A adults and K kids, without using multiplication and without any looping. 
Do this in two ways, using a different number of additions each time.  Hint:  
The charges are Integers.
8. Verification of Sequence
Prove (or disprove) that the following two Sequence algorithms are 
equivalent in producing the same output E.  Draw the data-flow diagrams.
a. C ¨ A ¥ A b. C ¨ A + B

D ¨ B ¥ B D ¨ A - B
E ¨ C - D E ¨ C ¥ D

9. Logical
If the two logical values are represented by the numbers 0 and 1 (F=0, T=1),
then prove the following equivalencies, which are in terms of arithmetic 
operations:
a. NOT(P) = 1 – P
b. P AND Q = P ¥ Q
c. P OR Q = P + Q – P ¥ Q
10. Logical Proof
Prove (or disprove) the following logical expressions.
a. NOT( P AND Q) = (NOT P) OR (NOT Q)
b. P AND (Q OR R) = (P AND Q) OR (P AND R)
c. P OR (NOT P AND Q) = P OR Q
Problems on Selection Forms and Verifications
11. Equality of Selection
Compare the following two algorithms and try (intuitively) to determine if 
they are equivalent.  Then prove, or disprove, this equivalence.
Problem 11
12. Bigger Equivalence
Prove whether or not the given algorithms are equivalent.
Problem 12
13. Trade-off Structure for Condition
Create algorithms equivalent to the following by combining conditions with 
logical operations.
Problem 13
14. Choices with Integers
Prove (or disprove) equivalence of the following algorithms, assuming non-
equal values (i.e.  A π B, and so on…).
Problem 14
15. Many Ways to Grade
Create a Grades algorithm equivalent to the ones previously outlined in 
Section 5.4, but starting with the first condition being (Percent ≥ 80).



Create another algorithm with the first condition being (Percent ≥ 60).
Indicate a set of values necessary to test this Grading algorithm.
16. Complements
Prove (or disprove) that the given two conditions are opposite 
(complementary) in behavior.

(X £ 30) AND ( (X > 20) OR (X £ 10) )
(X > 10) AND ( (X > 30) OR (X £ 20) )

17. Test Equivalence
Prove whether or not the following algorithms are equivalent in behavior.
Problem 17
Loop Tracing Problems
18. Convert
Trace the following algorithm for X = 13, and describe its general behavior 
briefly.  Assume Integer values.
Problem 18
19. Test Sort
Prove whether or not the following data-flow algorithm sorts variables having
unequal values.
Problem 19
20. Pow!
Trace the following algorithm for X = 13 and Y = 2.  What does this algorithm
do in general? Choose a better set of names for the variables.
Problem 20
21. Pi Square
Trace the following algorithm, which computes the square of p, and indicate 
what formula it computes (but do not work out the arithmetic).  Also describe
briefly how it works.
Problem 21
22. Refine Prime
A prime number is defined to be any positive integer which is divisible only 
by 1 and itself.
The following algorithm indicates whether any value X is prime or not.  
Modify this algorithm in at least two ways, so that it does less looping.
Problem 22
Problems on Creating Loops
23. Square Again
The square of an integer N can be computed by summing all the integers 
from 1 to N and then back down to 1.  For example:

42 = 1 + 2 + 3 + 4 + 3 + 2 + 1 = 16



Create an algorithm to compute the square of any Integer N using such a 
method.
24. Power
Create an algorithm to find the Nth power of any number X, where N is a 
non-negative Integer.  Then modify this algorithm to work for any integer N.
25. Fibonacci
One simple model of population growth (of rabbits) is given by the series:

1 1 2 3 5 8 13 21 34 55 89 ...
where the new population P at one month is determined by summing the 
previous two months’ populations (called latest L and second latest S).  
Create an algorithm to determine the population at month M, where M > 2.
26. Divide and Conquer
Create an algorithm to divide any integer A by another integer B, yielding a 
quotient Q and a remainder R.  Do this by using multiplication.  Do it also 
another way.
27. Another Signed Product
Create yet another algorithm for the Signed Product algorithm described in 
Figure 5.48.
28. Extend Change
Extend the Change Maker algorithms (1 through 4 of Section 5.7) to output 
the count of dimes also.
29. Expo
Create an algorithm to compute the exponential function from the first N 
terms of the following series:

30. Log
Create an algorithm to compute the natural logarithm function (base e) by 
the following series approximation (for ):

31. Sine
Create an algorithm to compute the trigonometric sine from the first N terms 
of the following series (where angle X is in radians).  Recall that the sine is 
positive in the first two quadrants.

Problems on Sub-algorithm Forms
32. Score
In some sporting events, a number of judges each gives a score.  The overall 
score is determined by dropping the highest and lowest scores and 
averaging the remaining scores.  Create a data-flow 



diagram to determine the score for an event, having five judges, giving 5 
grades (each having values ranging from 0 to 10).
33. More Majority
Draw a data-flow diagram for the formula:

M = A¥B + A¥C + B¥C - (2¥A) ¥ (B¥C)
first using only binary functions (having two inputs), then using functions of 
any number of inputs (i.e., using a four-input product).  Prove that this 
formula behaves as a majority.
34. Big Majority from Little Majs Grows?
The given algorithm below shows four majority units Maj3 connected in an 
attempt to create the majority U of five variables P, Q, R, S, and T.  Indicate 
whether the given algorithm does find the majority of five variables.  If it 
does not do it, then disprove it.  Otherwise show how you would prove it.

Set U to Maj3(Maj3(P, Q, R), Maj3(R, S, T), Maj3(P, R, T) )
35. ISBN Flow
Draw a data-flow diagram describing the ISBN algorithm of Chapter 3.  The 
inputs are the nine digits D1, D2, ..  D9 and the output is the check symbol C.
36. What Is It?
Draw a data-flow diagram for the following formula, and indicate briefly its 
behavior for all integers.

M = ( ABS(A + B) - ABS(A - B) )/2
37. One More Day
The following formula is supposed to compute the number of days D in any 
month M.  Draw the data-flow diagram of it and show what it does in a 
tabular form.

D = 30 + Mod (Mod Abs( 2¥M – 15), 4), 3
Loops and Invariance
38. Invariance of Division
Find the loop invariant of the Divide algorithm, Figure 5.29.
39. Invariance of Square
Create an algorithm to compute the square of any nonnegative integer N by 
successively adding N for a total of N times.  Find the loop invariant.
40. Invariance of Power
Create an algorithm to compute the power of any number X raised to some 
integer value N, by looping N times and multiplying.  Find the loop invariant, 
and use it to improve this algorithm.
41. Invariance of Pow
Find the loop invariant of the Pow algorithm shown in Problem 20.
42. Invariance of a Cube



The given algorithm computes the cube of any positive integer N.  Trace it for
N = 5.  Then indicate which of the following is the loop invariant.
a. C3 = A + B + C + 6
b. C = B + D3
c. C = B + (A/6)3
d. D3 = A3 + B2 + C + 6
e. 6 = A +B +C +D3
43. Invariance of Loan
Find the loop invariant of the Loan algorithm of Figure 5.32.  You need to 
introduce more variables, representing some sums.
44. More Invariance
Trace the following algorithms Cube and First, and find their loop invariants.  
Find two invariants for Second.
Problem 44
Applications (to business, engineering, and so on…)
45. Loan Again
Modify the Loan algorithm of Figure 5.38
a. so that the interest rate increases by 1% each year,
b. so that the payment is either 20% of the unpaid balance, or $25, 
whichever is greater,
c. to determine the time to pay off the entire loan and compute also the 
total interest paid.
46. Checks and Balances
An amount of $1,000 is deposited every year in a bank account for 5 years, 
at an interest rate of 10% per year (computed annually), with the interest 
computed on the present (increasing) balance, but chopped to the next lower
dollar amount.  Create an algorithm which indicates the balance in the 
account after 5 years, and trace this algorithm to compute this balance.  
Check this final balance by using another method.
47. Saving and Withdrawing
An amount of $10,000 is deposited in a bank account for 5 years, at an 
interest rate of 10% per year (computed annually) with the interest 
computed on the present (increasing) balance, but chopped to the next lower
dollar amount.  Each year $500 is withdrawn from this account.  Create an 
algorithm which indicates the balance in the account after 5 years, and trace
this algorithm to compute this balance.  Check this final balance by using 
another method.
48. Growth (of population, money, and so on…)
The growth of various quantities (money, population, disease) is often a fixed
portion of the present quantity.  For example, the yearly interest gained on 
an amount of invested money is given by a 



fixed rate R of interest, which is multiplied by the present amount A (or 
balance) each year.
Create an algorithm to determine the number of years required for the 
money to double.  Modify the algorithm to determine the number of years to 
reach a certain final amount F.
49. Reliability (of systems)
The reliability R of a system of N independent series components, each 
having Probability P is determined by:

R = P ¥ P ¥ P ¥ P ¥...¥ P ¥ P (where there are N Ps)
For example, consider a chain made of links each having a probability P 
of .99 of successfully withstanding a certain load.  If 70 of these are 
connected together (N = 70), the probability of all the links successfully 
withstanding the load is:

R = 0.99¥0.99¥0.99¥...¥0.99 = 0.50
Create an algorithm to determine the number of components N (each having 
given probability P) to reach a given reliability R.
Chapter 6   Bigger Blocks
In this chapter, we will extend the concepts seen in the previous chapters so 
that we may obtain more convenient tools.  As we mentioned in the review of
Chapter 5, there will be fewer fundamental concepts but more details and 
techniques.  
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6.1 Preview
So far, we have limited the data we used in our examples to a few fixed 
number of values.  All of these values were part of the algorithms and stored 
inside the computer.  Here, we will extend the data we will use to include any
number of values, as well as data stored outside the computer. 
We have already seen several examples of mixed forms, especially involving 
both repetitionsand selections, and in this chapter we will see more of these 
including slightly more complex algorithms and some useful paradigms and 
applications. 
We will also extend the fundamental Selection form to include a more 
general Select (or Case) form, where any number of choices can be made.  
The Repetition form will also be extended to include a For loop(or loop-and-
count). 
In accordance with our problem-solving method, we will stress, which makes 
it possible to develop in a number of stages.  Each stage is simple because it
usually involves only one repetition or selection form.  The various stages 
may lead to deeper nesting of loops and selections.
But the bigger structures introduced in this chapter are not necessarily 
always better! For example, while the For and Select Forms may sometimes 
be more convenient than the simpler While and Selection forms, they are not
as general and have limitations. 
This chapter will help you synthesize a little better what you have learned in 
the previous chapters, with some emphasis on top-down design.  This 
chapter comprises again a good number of examples that illustrate the 
various ideas discussed. 

6.2 Using External Data and Files
So far, the data used have been simple values that could be viewed as 
values in boxes.  Also, all of our data manipulations have involved simple 
variables that were set up by some actions in our algorithms.  Occasionally 
we have input some data from outside the program, but in all our examples, 
there were only very few values of data.  
In real problems, on the other hand, it is often the case that there are large 
quantities of data.  The data are usually stored outside the computer (on a 
diskette for instance) and brought in only when necessary, one value at a 
time. 
For example, consider the problem of computing some statistics, such as the 
average (or mean) value of a set of numbers.  In Chapter 5, we calculated 
the mean for four data values North, South, East, and West (see Figures 5.10 
and 5.11), all internal to the program, as shown again as Find Mean 1 in 
Figure 6.1. 



Figure 6.1 An Average program   Find Mean 1
First, the number of values to be averaged, Num, is set to a value of 4 and 
the variable Sum is initialized to a value of zero.  Then each value is 
accumulated into Sum.  Finally, Sum is divided by the value of Num, to 
determine the Mean value. 
Figure 6.2 Extended Average   Find Mean 2
This method can be modified by keeping the data values external, and 
reading in each of these external values, one at a time, into a single internal 
variable Value, which is added into Sum.  This method simplifies the internal 
data structure, but makes the algorithm longer, as shown by Find Mean 2 in 
Figure 6.2.  Here we are faced with the ever present dilemma in computing; if
we simplify the data, then the algorithm becomes more complex, if we 
simplify the algorithm then the data becomes more complex. 
If we are dealing with only a few values, either of the preceding methods 
(Find Mean 1 or Find Mean 2) could be used.  But if there are many values, it 
is crucial that we find the best method.  The preceding program may be 
further generalized to average any number of values by first reading in the 
number of values to be averaged, and then by replacing the series of input-
accumulate actions with a loop, as shown by Find Mean 3 in Figure 6.3. 
Figure 6.3 General Find Mean algorithm  Find Mean 3
The number of values to average could be stored with the external dataas 
the first item and input into Num.  The algorithm then includes a variable, 
Count, which starts at 0 and is increased once for each input value, until it 
reaches the value in Num and stops the looping.  We will further refine the 
Find Mean 3 algorithm in the next section. 
You may wish to try to refine the algorithm in Figure 6.3 first before reading 
any further, for there are a number of ways to refine it. 
The external datacan be input in many ways.  In the early days of computers,
the values were punched into cards that were read by card readers.  
Nowadays, the values may be input from a keyboard, one value at a time.  
Yet another common method, described below, uses files.
Files are a means of storing data external to the computer on physical 
devices such as tapes and disks.  Many of these devices are based on 
magnetic phenomena, but these physical aspects are not important to know 
at this time.  In fact, files can be viewed as collections of data.  The data 
values that are stored in a file may easily be retrieved, input to a program, 
changed, stored and output again to form a modified or updated file.  So files
can provide 



another source of input to programs.  They can also be used to pass data 
from one program to another.
All of this makes it possible to separate the data from the program, thus 
making the program more general, and applicable to many sets of data. 
End-Of-File Markers
Our Find Mean 3 algorithm can be refined in a number of different ways.  We 
will present and discuss two such refinements that involve different ways of 
indicating when all the data has been processed. 
The problem with the general method of Figure 6.3 is that the value Num 
must be determined externally before the computation begins.  If the 
number of data values is large and a human is to count them, there could 
easily be an error.  Furthermore, humans should not need to do the mundane
job of counting when a computer can do the job so much better. 
Figure 6.4 Find Mean 3 with a terminating value
The first way of refining Find Mean 3 is to use the algorithm to count the 
number of values as they are input, as shown on Figure 6.4.  This is done by 
placing a special “terminating” value after the last input value.  The 
terminating value(or end-of-file markeror sentinel value) is a value that is 
different from all possible data values.  When it is input, it causes the looping
to stop.  Of course, this terminating value is not counted or included in the 
average. 
The value used to mark the end-of-file depends on the data because it must 
be distinct.  For example, if all values were percentages (ranging from 0 to 
100), then a terminating value could be any number outside of this range 
(say 101 or 500).  Similarly, if all values were positive numbers, then any 
negative number could be used as a terminating value.  Sometimes a 
computer supplies its own end-of-file marker, often called EOF.
Note: It is often useful to choose an unusual terminating value that is simple 
to remember, and easy to spot visually, such as -999. 
A second refinement of Find Mean 3 is a generalization of our first 
refinement.  The first method used an end-of-file marker whose value was a 
constant written in the program.  This program was not general, since it did 
not work for all the possible values.
If the nature of the data changed so that the value –999 were now a 
legitimate data value, another terminator would have to be chosen and the 
program in Figure 6.4 would have to be modified.  To avoid modifying the 
program, the second refinement, shown in Figure 6.5, provides the 
terminator as the first piece of data and tests for its occurrence as the last 
piece. 



Figure 6.5 Find Mean 3 with sandwich
The two terminator values in Figure 6.5 “sandwich” the data.  Now the Find 
Mean 5 program averages any kind of numerical values except for the value 
entered as the terminator.  terminating “sandwich”
Note: Putting the terminating value at both the beginning and the end of the 
external data list makes the program easier to maintain.  When this value is 
changed, only the data list must be changed. 
Program reusability is the main reason for selecting the last refinement.  It 
allows us to view the program as a black box.  When there are some changes
to the data ranges, we only need to make changes to the data and not the 
program; we can use our program as is on the new data.
As we have seen so far, many algorithms can produce the same results.  
However, some of these algorithms can be more easily extended than 
others, which makes them more interesting to use.  For example, there are 
two ways to find the maximum value of two variables A and B, as shown in 
Pseudocode 6.1. 
The two algorithms Maximum 1 and Maximum 2 were introduced in Figure 
5.14. 
Pseudocode 6.1 Two ways to find the maximum of two values
The two algorithms in Pseudocode 6.1 are explained as follows: 
• Maximum 1 compares the two values directly and assigns the 
maximum value to Max immediately. 
• Maximum 2 assigns one of the values to be the maximum, then checks
this choice, and if the decision was wrong, it changes the maximum to be the
other value.  Although this second method may seem more complex and 
unnatural, it will turn out be easier to modify and extend. 
To demonstrate this, let’s extend both algorithms shown above (Maximum 1 
and Maximum 2) such that they now find the maximum of three values:  A, 
B, and C.  In both cases, this additional value C means that more selections 
must be added to the algorithms.
Pseudocode 6.2 Two ways to find the maximum of three values
The extended algorithms in Pseudocode 6.2 are explained as follows: 
• To extend Maximum 1, we must add nested selections.  The more 
values we wish to find the maximum of, the deeper this nesting of 
selectionswill be. 
• To extend Maximum 2, the new selections are added in series with the 
others.  Similarly, the more values we wish to find the maximum of, the more
selections there will be added one after the other.  Hence, Maximum 2 
Extended could be referred to as the “shallow” one, since no nesting was 
involved.  By the same token, 



Maximum 1 Extended could be called the “deep” one because of its deep 
nesting.  You will certainly agree that the shallow algorithm of Maximum 2 
was the easier to extend. 
We could easily extend Maximum 2 Extended even further so that it finds the
maximum of any number of values.  To do this, the necessary number of 
selections would be added in series; this is shown at the left of Figure 6.6.  
This long series of selections and inputs can easily be replaced by a loop, 
giving the Loop Max algorithm at the right of Figure 6.6. 
Figure 6.6 A long Sequence Max and a Loop Max
The first thing Loop Max does is read in the terminating value.  Then, the first
of the numbers to be compared is input and is immediately assigned to be 
the maximum, Max.  Once this is done, Loop Max successively inputs values 
and compares each value to the maximum, Max, updating it if necessary, as 
long as the input value is not the terminating value.  Finally the maximum is 
output.
Notice that this algorithm assumes that at least one value is given between 
the terminating values.  If it is possible that no values be given (other than 
the two terminating values), then the algorithm must be modified by testing 
before the first assignment to Max. 
This Loop Max algorithm could be extended in many ways.  For example, it 
could find not only the largest but also the second largest value.  Try it! It 
could also be extended to find the minimum value, to count the number of 
values, to sum all the values, to compute averages, to give running 
averages, variances, ranges, the number of values greater than a given 
value, as well as perform many other computations. 
Each of these computations usually involves an initialization of values, then 
some extension to the body and finally some output at the end.  You may 
recognize this pattern for it was used in both Loop Max and Find Mean 5.  
This pattern is illustrated in Pseudocode 6.3.
Pseudocode 6.3 Input pattern used in many algorithms
These computations may also be done using arrays, as we will see in Chapter
8. 

6.3 More Building Blocks
The Select Form
We have already pointed out that the Four Fundamental Forms (Sequence, 
Selection, Repetition and Invocation) are sufficient to create all algorithms.  
However, other forms may also be used, like the Select Form, which is a 
convenient way of expressing multiple choice selections. 



The Select Form (sometimes called the Case form) is a natural extension of 
the Selection form, where, instead of selecting from only two alternatives, 
there may be any number of choices nicely nested within one another as 
shown in Pseudocode 6.4.
Pseudocode 6.4 Cumbersome nested Selection Forms
The n conditions shown are tested in order (Cond1 then Cond2, and so on.) 
until the first condition that holds is found, and the corresponding set of 
actions is performed.  If none of the conditions from Cond1 to Condn are 
True, then all the actions represented by Actionsn+1 are performed. 
Notice that the pseudocode to achieve this commonly required operation is 
cumbersome and, because of the way in which we indent the True and False 
parts of a selection, moves rapidly to the right of the written form. 
Since the ability to select one set of actions out of many is so useful, a 
special form, the Select Form, was developed.  Using the notation of this 
form, Pseudocode 6.5 shows how the above fragment of pseudocode would 
appear. 
Pseudocode 6.5 The Select Form
The Grades 1 algorithm was first introduced in Chapter 5, Pseudocode 5.9. 
The form in Pseudocode 6.5 is much simpler to understand than the 
Pseudocode 6.4 which uses only Selection Forms.  To fully illustrate the 
difference between these two forms, Figure 6.7 shows the Grades 1 
algorithm expressed as a nested set of Selection forms (left) and as a single 
Select Form (right).  This figure also shows how the value of Percent selects 
the grade for output. 
Figure 6.7 Comparison of two representations of the Grades algorithm
Notice that, as with the nested Selection template (Pseudocode 6.4), once a 
condition has been satisfied, we are not limited to a single action as Actionsn
stands for one or a group of actions.  For example, if Grades 1 were also 
required to count the number of As, Bs, Cs, and so on, the algorithm in 
Pseudocode 6.6 could be used. 
Pseudocode 6.6 Select Form with many actions
Let’s illustrate further the Select Form with an algorithm for determining the 
unit price, depending upon the quantity ordered, shown in Pseudocode 6.7. 
Pseudocode 6.7 Algorithm Price, showing special case of Select Form
In this algorithm (Pseudocode 6.7), the conditions are all simple comparisons
of a variable to various constants.  This allows us to express the algorithm in 
a shorter variant of the Select Form know as the Case Form, shown on the 
right.  In the Case Form, we name the 



variable being used for the comparison at the head of the form and the 
constant values are listed, separated by commas ,as the conditions.  The 
Case Form is a special instance of the Select form where the conditions test 
for equality to constants. 
The For Form
The only Repetition forms considered so far have been the While and the 
Repeat-Until forms.  Of these two, the While is the more fundamental, and, 
as we saw in Chapter 5, no other loop form is necessary.  There is, however, 
one other loop form that is useful or convenient at times:  the For loop.
For loop forms, sometimes called Loop-and-Count forms, are one of the most 
useful extensions of the Four Fundamental Forms.  A For loop is used in all 
cases where the number of repetitions is known, and usually replaces a 
While loop where the condition involves a counter.  The For loop specifies the
initial value of that counter, the value by which it is incremented during each
loop, and the limit that the counter must reach to stop the loop.  Using a 
While loop, it is necessary to explicitly set up the counter’s initial value, to 
test the counter, and to increment it.  On the other hand, the For loop does 
all that implicitly. 
Figure 6.8 Use of the For loop to calculate a product
Figure 6.8 illustrates the difference between While and For loops by showing 
a variation of one of the algorithms for calculating a product that we studied 
in Chapter 5.  Here, the product X ¥ Y is calculated by summing values of X, 
Y times.  On the left of Figure 6.8, a standard While loop is used while on the 
right the same algorithm is expressed using the For loop.
This new notation decreases the complexity of some algorithms since the full
counting mechanism is specified in the statement at the head of the loop 
instead of having it stated in three separate statements as illustrated in 
Pseudocode 6.8. 
Pseudocode 6.8 The full counting mechanism in While loops
Although the full counting mechanism is easily discernible in Pseudocode 6.8,
they might not be as visible in a large example.  The For form allows us to 
think in terms of larger blocks, so making our algorithms look smaller and 
more intellectually manageable. 
Pseudocode 6.9 The Factorial algorithm with a While loop and with a For 
loop
In Chapter 5 we saw an algorithm to calculate the factorial of N, which is 
shown again at the left of Pseudocode 6.9 while on the right, the same 
algorithm is shown using the For loop.  It is clear that the hiding of the 
counting mechanism in this version reduces its complexity. 



Let’s take another algorithm from Chapter 5 and transform it so that it uses a
For loop.  Pseudocode 6.10 shows the Odd Square algorithm that computes 
the square of an integer Num by summing the first Num odd integers.  This is
done by starting counter OddNum at one and looping with a step size of two,
adding this odd counter value to Square during each repetition. 
Pseudocode 6.10 The Odd Square algorithm revisited
The For form is so powerful that it is used very often, but it is often also 
misused for it requires a counter and such a counter may not be necessary 
or natural for some applications!
Finally, the following two pseudocode fragments compare the pseudocode 
forms for the While loop and the For loop (Pseudocode 6.11). 
Pseudocode 6.11 Comparing While and For loops
There are many limitations of the For form, which may make this form 
unsuitable in some cases.  For example, in most programming languages, 
the initial value and the final value of the counter, which could both be given 
as expressions, are evaluated only once on entry to this form, and thus 
should not be changed inside the loop.  Also, the counter should not be 
modified in the body of the loop, since this would change the number of 
repetitions.  Additionally, in some programming languages, the initial, final 
and increment values may not be zero or negative or of Real Number type.
Finally, after the loop terminates, the value of the loop counter (or loop 
control variable) may be undefined! The While loop has no such restrictions, 
so you may always use it in cases where these restrictions would cause 
problems to a For loop. 
Note the While loop is more general than the For loop.  When in doubt, you 
can always use the While loop. 

6.4 Using the For Forms in Nests
Nesting Fors in Fors
The nesting of Repetitions (loops nested within loops) is very common and 
useful.  However, if too much of the looping mechanism is visible, this 
nesting may seem very confusing.  To see this, we will look at an example 
first expressed with nested While loops and then with nested For loops.
See Figures 3.6 and 3.15 for the verbal Charge algorithm along with its table 
of charges. 
Pseudocode 6.12 shows two forms of an algorithm with doubly nested 
counting loops.  It is a version of an algorithm we have discussed in various 
forms in Chapter 3, and that computes the total admission Charge if Adults 
pay three dollars each and Kids pay two 



dollars each.  The algorithm creates a table of charges for one to two adults 
and zero to three kids.  On the top of the figure, is a version based on While 
loops.  Because it is written using nested While forms with all the counting 
mechanisms visible, the algorithm appears complex. 
Pseudocode 6.12 Nested Loops
On the bottom of Pseudocode 6.12, the same algorithm has been rewritten 
using For loops.  Notice that this notation hides most of the details.  This 
version, consisting of only three parts, two loop headers and a body, is much 
simpler than the original one that has seven parts (two initializations, two 
tests, two increments, and a body).  We will prove that with the traces of the 
two algorithms. 
Figure 6.9 Detailed trace of doubly-nested While loops
The first trace, shown on Figure 6.9, illustrates the execution of the algorithm
at the top of Pseudocode 6.12.  The large amount of detail increases the 
complexity of the trace, and this can be avoided, as we will see in the next 
figure.  In a trace all of the detail is needed for understanding how the 
algorithm works; it is also important for tracing extremely complex nested 
algorithms.  However, most nesting of loops is quite simple, even with three 
or four levels of nesting—provided it can be viewed properly.
Figure 6.10 Simple trace of doubly-nested For loops
In Figure 6.10 we can see the trace of the algorithm at the bottom of 
Pseudocode 6.12.  The two traces in Figures 6.9 and 6.10 are traces of 
equivalent algorithms.  However, we can see that the second trace is much 
simpler than the first one.  It simply lists all combinations of the loop control 
variables.  The inner loop control variable, Kids, changes more rapidly 
compared to the outer loop control variable, Adults.  The resulting Charge is 
also listed completing the entire table of charges.  Because the details are all
hidden, the trace is much simpler!
Many algorithms involve loops directly nested within others, like the Charge 
algorithm.  Such algorithms have a similar behavior; they cycle through all 
combinations, like a big counter, as illustrated by the following examples.  
This cycling could be compared to that of a digital clock or a mileage 
odometer. 
Let’s develop a timer, using a top-down approach, as shown on Figure 6.11.  
The minutes counter loops from 0 to 59, and for each minute, the seconds 
counter also loops from 0 to 59.  The body of the seconds loop consists of a 
delay of one second and a display of the minutes counter and of the seconds
counter.  Notice that the inner loop counter (seconds) changes faster than 
the outer loop counter 



(minutes).  At the bottom of the figure, the nested loops are combined and 
shown in a single piece of pseudocode. 
Figure 6.11 An hour timer
A decimal counter can be implemented by a similar piece of pseudocode as 
shown in Pseudocode 6.13. 
Pseudocode 6.13 Nest For forms for a decimal counter
Pseudocode 6.13 outputs the following sequence: 
00 01 02 03 04 05 06 07 08 09 10 11 12 ...  89 90, ...  99. 
Pseudocode 6.14 shows another similar piece of pseudocode. 
Pseudocode 6.14 Nested For forms for die combinations
Pseudocode 6.14 lists all 36 possible dice combinations in order: 
11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,
31, 32, 33, 34, 35, 36, ..., 46, ..., 56, ...  66. 
Pseudocode 6.15 shows the algorithm for a Binary Counter. 
Pseudocode 6.15 Binary counter
Pseudocode 6.15 shows how binary numbers can be generated in increasing 
order.  Its output is as follows: 
000, 001, 010, 011, 100, 101, 110, 111. 
Those combinations could then be tabulated, as seen in Figure 5.24. 
This Binary Counter algorithm could be used to generate all of the possible 
combinations to test the Majority algorithms seen in Chapters 3 and 5. 
Going one level deeper, Pseudocode 6.16 illustrates the For forms for a 
mileage odometer. 
Pseudocode 6.16 Nested For forms for a mileage odometer
Pseudocode 6.16 shows how four nested loops generate all decimal values 
from 000.0 to 999.9.  Notice the order in which the values of the variables 
change.  Hundreds, the control variableof the outermost loop, changes the 
slowest while Tenths, the control variable of the innermost loop changes the 
most rapidly, just as they do on the odometer of an actual car. 
Finally, Pseudocode 6.17 shows the Clock algorithm. 
Pseudocode 6.17 The Clock algorithm
Pseudocode 6.17 simulates a 24-hour clock that works perpetually, using a 
condition for the While loop that is always true.  This is one of the few 
occasions where an infinite loop happens by design instead of in error. 
The nesting of many such loops is convenient and can be elegant, but not all 
nestings are so well structured.  In the following section we will look at more 
examples of nested forms. 
Nesting Selections in Fors
See Chapter 2, Section 2.2 for more details on this problem-solving method. 



Most programs involving nested loops are not as simple as the previous 
examples of nested loops.  We will consider now more general nestings of 
loops with the idea that the creation of complex loop structures is easiest 
when done top-down in stages.  This approach is in accordance with steps 2 
and 3 of our problem-solving method, so that each stage only shows one 
loop.  
Figure 6.12 Development of the Fair Pay algorithm
The development of the Fair Pay algorithm, Figure 6.12, shows the nesting of 
two Loops and a Selection, done in three stages.  It describes the solution to 
a pay problem where overtime is paid for all hours over eight worked in a 
day.  The first stage (or top level) consists of a single loop repeated for each 
Person; first Get Hours is invoked and then the pay is calculated. 
The second level, Get Hours, is then considered by itself, looping over the 
seven days of the week to accumulate the number of hours (both regular 
hours and extra hours).  The accumulation of these two sums is then broken 
out at yet another level, as a Selection form. 
Similarly Calculate Pay could be broken down further.  If all of these stages 
were combined into one large stage, then the nesting might appear complex.
However, viewing them as stages, as done in Figure 6.12, makes the whole 
algorithm seem simpler. 
Figure 6.13 Production data
Our next example is an algorithm that analyzes the manufacturing of items 
made by the employees of a company over some years.  The production data
(count of items) is shown in Figure 6.13, where two years and three 
departments with varying numbers of employees are involved.  The main 
goal of the Production algorithm is to find the department with the maximum
total production for each year. 
Figure 6.14 A typical input/output for the Production algorithm
Notice that this example (Figure 6.13) involves four very different entities:  
years, departments, employees and production.  When four such diverse 
entities are mixed in an algorithm, the result could be great confusion.  
Creating the program in stages will help us minimize this confusion. 
Figure 6.14 shows a trace of the input of the production data for a given 
year, and of the corresponding result.  Notice its structured form (with 
indentation), which reflects the structure of the data.  Actually such large 
amounts of data would not usually be input in such a “conversational” mode 
from where the computer prompts you, but from a data file stored on tapes 
or disks.
Figure 6.15 Top-down development of Production algorithm
Figure 6.15 shows a three-stage top-down development of our Production 
algorithm that analyzes the data just described. 



• The first stage shows only a setup, a looping from the First year to the 
Last year, followed by a report of results.  Within this first loop, the sub-
algorithm FindMaxProduction is invoked. 
• This sub-algorithm is further refined in Stage 2, where we show how 
the maximum total production, MaxProd, is computed by looping over all 
departments from 1 to N.  Within this loop, we invoke FindTotal to find the 
total production, TotalProd, of each department.  Then, invoking CheckMax., 
we compare it to MaxProd (replacing the values of MaxProd and BestDept 
when necessary).  After this, the maximum production and the best 
department of that year are output. 
• Stage 3 refines FindTotal by looping and accumulating the production, 
Prod, of each Person of the Count employees in the department.  Stage 3 
also refines CheckMax, using a simple selection. 
These three stages could be “pushed together” into a single big algorithm, 
but this would hide its basic simplicity.  Also, when an algorithm is kept in the
form of sub-algorithms, it is simpler to modify.  For example, we could modify
Production to find the maximum departmental average production per 
person by simply comparing the ratio TotalProd/Count in the Selection form 
of CheckMax.  Similarly, we could count the total number of people, 
accumulate the total production and compute the best average production 
per person over all the years (not just for each year).  Such modifications are
often made after a program is written, so it helps to write the program 
keeping possible modifications in mind!
Creating Plots with For Nests
Doubly nested loops are very convenient for two-dimensional output of 
tables, grids, calendars, graphs and plots.
For example, the algorithm shown in Figure 6.16 moves and prints in the 
pattern that many people use for reading or scanning:  left to right along a 
row and proceeding downwards.  This Scan algorithm prints consecutive 
numbers as it scans this grid pattern for four rows and seven columns.  Its 
output could be viewed as a simple calendar model. 
Figure 6.16 Scan algorithm and its output
In a similar fashion, two-dimensional plots of a function such as... 
...can be created by printing marks on a grid as shown at the left of Figure 
6.17.  In practice, using screens or printers, it is more convenient to plot this 
on its side as shown at the right of the figure. 
Figure 6.17 Plot of Y vs. X
In this sideways plot, each row contains only one mark (an asterisk * in this 
case).  We will view the printer head (or cursor) as “advancing” row by row 
from top to bottom, and in each row from 



left to right.  You may note that the asterisks are placed into a grid of X 
versus Yint (and not Y), where Yint represents the integer portion of Y. 
Figure 6.18 Sample values
The table of Figure 6.18 shows how the values of the output Y are rounded 
into integers Yint. 
Figure 6.19 Algorithm for plotting a graph
On the left of Figure 6.19 is the top view of the graph-plotting algorithm.  It 
loops through the various values of X, first computing Y, then rounding it to 
Yint and then printing a line corresponding to that value. 
The sub-algorithm that prints a line is then refined and shown at the right of 
the figure.  The printing head advances, stepping Position from 0 to 10.  If 
Position equals Yint, then a mark is output, otherwise a blank is output. 
Such a plot may be extended by displaying headers, marking the axes, and 
even “scaling” any given values to fit onto a page or a screen.  It can also be 
extended to plot two functions as shown in Figure 6.20.  Here, the Plot 
algorithm is modified to compute a second value Zint, and the Print a Line 
sub-algorithm is modified to output either an asterisk for the first function, a 
plus for the second function or a blank.  Further extensions to plot three or 
more functions are done in a similar manner. 
Figure 6.20 An extended plot of two graphs

6.5 More Data Types
The Character Type
Until now, our algorithms have manipulated only numeric values that are of 
type Integer or Real Number.  We have also already mentioned other 
common data types including Character, Logical and String.  Here, we will 
explain in more detail the Character and Logical data types. 
The Character data typeincludes values that represent all the symbols on a 
computer keyboard.  This includes all letters (upper and lower case), digits, 
punctuation marks, brackets and other miscellaneous symbols (%, $, and so 
on.).  As we have seen earlier, the Character values are put within single 
quotation marks to distinguish them from variables. 
Note In most programming languages, the variables used in a program must
be declared as being of one type, and this declaration is usually given at the 
beginning of the program. 
Here are a few samples of Character variables and their values: 
• Grade : ‘A’, ‘B’, ‘C’, ‘D’, ‘F’



• Reply : ‘Y’, ‘N’, ‘y’, ‘n’ (for Yes or No)
• Operator : ‘+’, ‘-’, ‘*’, ‘/’
• Digit : ‘0’, ‘1’, ‘2’, ‘3’, ‘4’...’9’
• Bracket : ‘(‘ ‘)’ ‘[‘ ‘]’
Operations on Characters include assignment, comparison, input and output.
The assignment of values to character variables is done in the usual manner 
as illustrated by Pseudocode 6.18.
Pseudocode 6.18 Assigning values to character variables
The comparison of Characters is based on the character codes used by the 
computer.  Fortunately these codes are such that alphabetical characters are
considered ordered in the usual way; ‘A’ is considered to be less than ‘B’.  
For an example, consider the statement in Pseudocode 6.19.
Pseudocode 6.19 Character variables used in Selection forms
This statement will increment Counter if the grade is the character ‘A’ or ‘B’. 
Notice that character ‘A’ is less than character ‘B’, which is not the 
conventional view of grades! If you compare punctuation signs you will need 
the character codes to know how they are ordered! The most common 
standard code is called ASCII. 
To illustrate the processing of Character data, we will develop an algorithm to
implement a simple four-function calculator.  Our algorithm is shown in Figure
6.21 and behaves as an unusual four-function calculator that accepts 
sequences of alternating numbers and operations.
Figure 6.21 Algorithm for four-function calculator
The Decode algorithm, shown on the right of Figure 6.21, recognizes the 
operations (an asterisk denotes multiplication) and applies them to the 
numeric values until it encounters an equal sign, as in the following 
examples: 
1 + 2 * 3 = (which returns 3 ¥ 3 or 9)
4 * 5 – 6 / 7 = (which returns 14 / 7 or 2)
9 / 5 * 100 + 32 = (which returns 212)
Note:  The operations in the above example are applied from left to right.  
This is not the operator precedence which we are used to!
Notice that the Decode algorithm uses the Case Form (a variation of the 
Select Form) that compares a single value with a set of constants and 
performs the appropriate action.  If the Function entered is not one of the 
recognized operations, the message “Function error” is output. 
Figure 6.22 Algorithm for ISBN checksum computation
For more details on how to compute the checksum for ISBNs, see Figure 3.5. 



As another example of Character data handling, let’s look at the algorithm to
compute the checksum for the International Standard Book Number (ISBN), 
which was already described in Chapter 3.  Figure 6.22 shows the two-stage 
development of the ISBN Checksum algorithm. 
You should first note that a Character such as ‘2’ is not equal to the Integer 
number 2.  This means that when numeric Characters are input, they must 
be converted before they can be treated as numbers.  The ISBN Checksum 
algorithm accepts an input sequence of mixed Characters (numeric 
characters and hyphens), ending with a period.  It ignores the hyphens and 
invokes sub-algorithm Convert Character to convert the numeric Characters 
into their corresponding Integer values.  It then multiplies the digits by their 
rank (look back to Chapter 3 for the algorithm description), and accumulates 
them in Sum.  When the input is terminated, the algorithm uses the Mod 
function to find the Remainder of the division of Sum by 11.  If that 
Remainder is 10, then the check symbol is ‘X’.  Otherwise, the check symbol 
is the Remainder itself. 
The Logical Type
As mentioned in Chapter 5, Section 5.4, the Logical (or Boolean) type 
includes only two values, True and False (sometimes labeled T and F, or 1 
and 0).  Logical variables are often used in conditions within Selection and 
Repetition forms.  A few examples of Logical variables are shown in 
Pseudocode 6.20.
Pseudocode 6.20 Examples of Logical variables
For the truth table for the AND, OR, and NOT operators, consult Figure 3.27. 
Operations on Logical type variables include the assignment operation, the 
conjunction operation (AND), the disjunction operation (OR), and the 
negation operation (NOT).  Pseudocode 6.21 illustrates a few examples of 
logical assignments. 
Pseudocode 6.21 Examples of Logical assignments
The conjunction operation is called AND.  The conjunction of two logical 
variables P and Q is written “P AND Q” and is true when both P is True and Q 
is True.  Some examples of the use of AND are shown in Pseudocode 6.22. 
Pseudocode 6.22 Examples using AND
The disjunction operation is called OR.  The disjunction of two logical 
variables P and Q is written “P OR Q” and is true when either P is True, or Q is
True (or both are True).  Some examples of the use of this “inclusive” OR are 
shown in Pseudocode 6.23.
Pseudocode 6.23 Examples using OR



The negation operation is also called NOT, and simply reverses the truth 
values, changing True values to False and vice versa.  Pseudocode 6.24 
shows some examples of its use.
Pseudocode 6.24 Examples using NOT
When converting directly from English, it is easy to produce improper forms 
of Logical expressions.  Figure 6.23 gives some examples of improperly 
formed expressions, along with their corresponding correct versions.
Figure 6.23 Improper expression and their corrections
See Figure 4.13 for more details on the different types of triangles possible. 
Algorithms involving complex combinations of Selection forms can often be 
done in a simpler manner by using Logical expressions.  For example, 
triangles can be classified by the following series of Logical assignments 
(assuming angles A ≤ B ≤ C).  Note that this avoids the use of Selection 
forms.  Pseudocode 6.28 gives some examples of using Logical expression in 
place of Selection forms.
Pseudocode 6.25 Examples of Logical expressions
It is possible to compare truth values, if the True value is assumed to be 
greater than the False value.  The table below (Figure 6.24) introduces four 
truth tables describing some of these comparison operations which 
correspond to known functions of symbolic logic. 
Note: Remember that True=1 and False=0.  Hence, since 1>0, then 
True>False. 
Figure 6.24 Truth table for some comparison operations
The table in Figure 6.24 is described column by column as follows: 
• Column 1 shows the operation “P ≤ Q”, where the relation “less than or
equal to” is applied to Logical values.  In symbolic logic, this operation is the 
conditional connective called implication, usually denoted by the symbol “P 
… Q”, which is read “If P then Q”.  This conditional connective is often used 
in logical deduction, where it is sometimes noted as “P fi Q” or “P Æ Q”. 
• Column 2 shows the operation “P = Q” (the Biconditional connective).  
It is read as “P if and only if Q” and is also noted in logic as “P ∫ Q” or “P € 
Q”. 
• Column 3 shows the operation “P ≠ Q” (the “exclusive or”) which is 
True when one and only one of the values is True.  It is sometimes noted as 
“P <> Q”. 
• Column 4 shows the operation “P > Q” (sometimes called the inhibit-
and) where the value of P is inhibited by Q. 
Other Logical operations exist, for instance P < Q and P ≥ Q. 

6.6 Some General Problem-Solving Algorithms



Bisection   Finding Values
The Bisectionalgorithm is very useful for solving many types of problems and
is often also referred to as Bracketing, Divide and Conquer, or the Half-
Interval Method.  It proceeds by taking two limiting values and adjusting 
them successively to bracket the required result.  This is actually the method
we used in the Guesser algorithm of Chapter 4 (see Figure 4.7), which is 
reproduced and renamed at the left of Pseudocode 6.26.
Pseudocode 6.26 The bisection technique and its application to finding a 
square root
By refining this guessing algorithm for the particular problem to solve, this 
bisectiontechnique can be applied to many problems, such as calculating the
square root of some number, X.  This particular refinement is shown on the 
right of Pseudocode 6.26.  The behavior of this algorithm will be better 
understood by looking at Figure 6.25, where the algorithm is used to find the 
square root of 24. 
First, a High limit of 24 and a Low limit of 0 are set.  The mid-point between 
High and Low, 12, is chosen as a first guess at the square root of 24 and is 
set in SqRoot.  Since this guess is too high (12 ¥ 12 > 24), the higher limit is 
lowered to the middle value, SqRoot. 
If the guess was too low, the lower limit would have been raised to the same 
middle value.  This same process is now repeated for the new limits.  This 
repetition continues until the two limits narrow down (or bracket) the solution
to the perfect match (SqRoot ¥ SqRoot) = X, which corresponds to SqRoot, 
High and Low having the same value. 
Figure 6.25 The trace of ranges for the square root of 24
This perfect match might prove elusive, and algorithms dealing with Real 
Number results usually introduce the concept of precisionto determine 
whether a result is acceptable or not. 
For example in our SquareRoot algorithm, this would mean that the looping 
continues as long as the square of the guessed root of X differs (in absolute 
value) from X by more than some very small constant, the desired Precision. 
This constant of Precision is initially chosen to be some small value, such as 
0.1 or 0.00001.  The smaller the value, the more looping is required to attain 
that Precision. 
Symbolically, the loop condition could use the Abs function which gives the 
absolute value.  This condition would be written as... 
Abs(SqRoot ¥ SqRoot – X|) > Precision
instead of... 
(SqRoot ¥ SqRoot) π X. 
Let’s modify our SquareRoot algorithm along these lines. 



Figure 6.26 shows a trace of the new SquareRoot algorithm computing the 
square root of 24.  Notice that this method of bisectionis not limited to just 
square roots! It can equally compute the cube root by simply changing the 
loop terminating condition to compare the cube of the current approximation
with the value X.  The Bisection Method can also be used to find the roots of 
equations. 
However, this Bisection method might sometimes have limitations.  For 
example, the given SquareRoot algorithm does not work properly if the input 
value of X is between 0 and 1.  Try a trace to see why. 
Figure 6.26 New SquareRoot algorithm and trace for X=24
Bisection is a very general method for finding values, that will be useful later 
in many problems.  For example, we will use it again in Chapter 8, to search 
quickly through a sorted list. 
Maximum Power   Optimizing Power Output
Let’s turn now to an engineering application.  Oftentimes in engineering we 
want to determine optimal values for the variables of a system.  To do this, it 
is necessary to analyze the effect that the various variables of the system 
have on each other. 
The diagram in Figure 6.27 is an electrical network, consisting of a voltage 
source of VS volts, providing power to a load resistor RL through a series 
resistor RS.  We wish to determine the value of the load which would provide 
the maximum power P to the load. 
Figure 6.27 A simple circuit diagram
Relations among the variables are given by the formulas on the right in 
Figure 6.27 (determined from knowledge of Ohm’s law and Kirchoff’s laws). 
The behavior of such a system, given in Figure 6.28, shows how the power P 
(in watts) varies, depending on the resistance RL of the load (in ohms).  From
this graph, we see that the best value RLbest of the load resistor RL is 6 
ohms (same value as the series resistor RS), resulting in a maximum power 
PMax of 600 watts. 
Figure 6.28 Power plot for circuit in Figure 6.27
The algorithm Power, shown in Figure 6.29, is an algorithm which analyzes 
this system.  It is a simple loop that varies the load resistance RL from zero 
to some final value RLfinal, computing the corresponding value of power P.  
At each iteration, the sub-algorithm Process is invoked.  Such a sub-algorithm
could define any kind of process.  It could, for instance, simply output the RL,
P combinations.  Or, it could also compute the maximum power PMax and 
the corresponding best resistor RLbest, as shown in Figure 6.29. 
Figure 6.29 Algorithm for finding Maximum Power
The Process sub-algorithm could also find the half power points; those two 
values of RL (say, RLlow and RLhigh ) at which half power 



is sent to the load.  Those two values are shown on the plot of Figure 6.28 as 
being 1 ohm and 34 ohms.  Any load value between these two would result 
in more than half power being delivered.  Notice that the half power points 
are not equally distant from the maximum power point RLbest.  It is also 
possible to create an algorithm that plots the power P versus the load 
resistor RL.  Such a plotting algorithm would be similar to the ones 
developed in Section 6.4 (Creating Plots with For Nests). 
In this case, the values of the load resistor RL were systematically selected in
increasing order, from 0 to some positive final value (which is 40 in this 
example). 
This example application gives us a model that we can apply to analyze 
other engineering systems.  For example, we may wish to find the optimal 
angle to shoot some object so that it goes the farthest distance.  Or we may 
wish to compute the best combinations of Selectionsto make optimal profits. 
Sometimes, with some extra knowledge, we can avoid having to write an 
algorithm to analyze a system.  For instance, in the case of our example 
above, we could have proven, by using calculus, that the maximum power 
occurs when the load resistor RL equals the series resistor RS.  However, in 
cases where the systems are more complex (say nonlinear), then computer 
methods may be better than analytical methods. 
Solver   Solving Equations
Now we will develop a general equation solving algorithm, Solver, that solves
any two equations that are functions of a single variable, say x.  The 
equations may be linear or highly nonlinear.  Solver will find any number of 
values of x that satisfy both equations, be it zero, one, two or more. 
Figure 6.30 Graphical solution of two equations
For example, consider the following functions  and  shown in Figure 6.30: 
and 
The figure shows that the two graphs intersect at two points, providing two 
solutions: 
and 
There are many ways of using a computer to solve two such equations.  
Here, we will use a method based on trying random values.  This method is 
simple.  Try some values of x randomly and see which is the best.  The best 
value of x would be the value for which the difference of the two function 
values is the smallest.  For each random valueof x, the program finds the 
values of each function, y1 and y2: 



y1 = F(x) and y2 = G(x)
These two values are then subtracted, yielding the error for that particular 
value of x. 
Error = Abs (y1 - y2)
• If the error is zero, the functions yield the same values, and the graphs 
intersect for that value of x. 
• Otherwise, this process of randomly trying many values of x over some
range is repeated a number of times, in search of the minimum error.  The 
final result is the value of x that produced the minimum error. 
For example, if the random value chosen for x is 2.0, as shown in Figure 6.30,
then the resulting error is 4.0 as shown by the big bracket— the difference of
the two functions at that point. 
Similarly, if the random value chosen for x is 0.5 then
y1 = F(0.5) = (0.5)¥(0.5) = 0.25
y2 = G(0.5) = 2.0 – 0.5 = 1.50
Err = Abs( 0.25 – 1.5 ) = 1.25
If the random value chosen for x is +1.0, then y1 = y2 and the error is zero.  
For other values of x, there could be a larger error.  We could reduce the 
errors by using the Solver again, but within a range that is much closer to the
actual value of a solution. 
In the case of our example, other tries of Solver would also yield the other 
solution (which is -2.00).  In fact, it would be useful to run Solver a number of
times, say 10, so that other solutions (if they exist) may be seen. 
Figure 6.31 Solver algorithm for solving pair of equations F(x) and G(x)
The algorithm to apply this method, Solver, is shown in Figure 6.31.  It 
consists of a large loop that tries many values of x (say 200).  Within this 
loop, for each value of x, it invokes sub-algorithm Update Best that computes
both functions, finds their difference and keeps track of the smallest error 
and the corresponding best x.  Here are sample outputs for various 
executions of this algorithm: 
Value of x Minimum Error
-1.98 0.006
+0.50 1.250
+0.99 0.030
+1.04 0.122
-2.02 0.060
An alternative way to determine when to terminate the While loop is not to 
count the number of values of x chosen, but to stop looping whenever 
MinError reaches a given lower limit.  Note that the Solver algorithm looks for
one solution at a time.  In particular, if it finds 



several solutions with a zero error, it will only keep the first one.  If we want 
all solutions, we must either
• Modify the algorithm so that it keeps all solutions, or
• Run Solver a number of times in various ranges, as we have done 
above, and use the results for determining new ranges to try. 
As we have seen with other algorithms, we can use Solver as a model to be 
modified to find other results.  These results could include finding the roots 
of an equation, finding the maximum value of a function, determining if an 
equation has no root, and so on. 

6.7 Review   Top Ten Things to Remember
1. This chapter introduced bigger blocksof many kinds, but it is 

important to keep in mind that bigger is not always better. 
2. We have seen that bigger datawere in the form of external 

datastored outside the computer in files which are a means of storing 
voluminous data on physical devices such as tapes and disks. 

3. To aid in reading in data from files, the concept of a terminating 
valueto mark the end of external data was introduced, as well as the 
terminating “sandwich”, which marks the beginning and the end of the data 
with the same terminator.  A terminating value, or terminator, acts as an 
EOFthat must be distinct from the data being read. 

4. Bigger algorithmsare simply extensions of the original 
algorithms.  The obvious ways of obtaining bigger blocks was to use bigger 
mixtures of forms, especially of Repetitionsand Selections. 

5. We also introduced bigger Selection forms, such as an extension 
of the Selection Form:  the Select Form.  Instead of selecting from only two 
alternatives, the Select Form allows for any number of choices, simply nested
within one another. 

6. The Case Form, a variation of the Select Form, was also 
introduced and is used to compare one variable against many constants. 

7. The biggerRepetition formthat was introduced was the For loop, 
convenient when counting is involved, but otherwise somewhat restrictive. 

8. It is easy to create bigger nests of loops that are also potentially 
difficult to understand.  However, when they are viewed one at a time in a 
proper top-down break-out diagram, they seem simpler.

9. The choice of data types was also made bigger by adding the 
Character data typeand the Logical data type.  As with other data types, 
operations on Characters include assignment, comparison, 



input and output.  Operations on Logical type variables include the 
assignment, conjunction (AND), disjunction (OR), and negation (NOT).  
Logical variables may also be compared. 

10. The Bisection algorithm was also introduced and is very useful 
for solving many types of problems.  It proceeds by taking two limiting 
values and adjusting them successively until they bracket the required 
result.

6.8 Glossary

Case Form:  A variation of the Select Form.  A synonym for the Select Form. 
Control Variable:  See Loop Control Variable. 
EOF:  Abbreviation for End of File. 
File:  A major unit of data storage and retrieval, generally stored outside the 
computer on an external storage device, for example, tape or disk. 
Loop Control Variable:  The variable that contains the value of the counter in 
a For Loop Form. 
Precision:  A measure of the degree of discrimination with which a quantity is
stated and thus of the ability to distinguish between nearly equal values. 
Pseudo-random number:  An ordered set of numbers that has been 
determined by some defined arithmetic process but which is effectively a 
sequence of random values for the purpose for which it is required. 
Random value:  A number obtained by chance.  See pseudo-random number.
Select Form:  An extension of the Selection form where, instead of selecting 
from only two alternatives, there may be any number of well-nested choices. 
Sentinel value:  End of File marker supplied by the user rather than by the 
computer system software. 
Terminating value:  End of File marker supplied by the user rather than by 
the computer system software. 

6.9 Problems
1. Monthly Calendar
Create an algorithm top-down in pseudocode form to output a monthly 
calendar given the number of days N in a month and the first day F (where 
F=1 on Sunday, F=2 on Monday, etc.). 



An example of a calendar follows for a month with N = 31 days having a first 
day occur on a Saturday, so F = 7.  Notice that such a month requires 6 
weeks!
Problem 1
2. Plot up
Create an algorithm top-down in pseudocode form to plot some function F(x) 
vs. x, with the y-axis vertical and the x-axis horizontal.  Use as an example 
the previous plot of y = x2 / 3 for x varying from 0 to 5 and y varying from 0 
to 8 producing an output as shown below. 
Problem 2
3. Sine Function
The trigonometric sine of an angle x given in radians can be determined from
the first N terms of this series: 

Create an algorithm top-down to compute this sine function.  Attempt to 
improve upon this algorithm. 
4. A Case of Max, Mid, and Maj
Create a Select structure to compute M, which is the following: 
a. the maximum value of three variables A, B, and C. 
b. the minimum value of three variables, A, B, and C. 
c. the majority value of three binary variables A, B, and C, each having 
values 0 or 1. 
5. Second Max
Modify the Big Max algorithm to find the second highest value S, assuming 
that all values are different. 
6. Many Max
Modify the Big Max algorithm to find the number of values N which are 
maximum (when some values may be repeated). 
7. MaxMin
Modify the Mean program (with sandwich in Figure 6.5) to compute both the 
maximum and minimum values. 
8. Quadrant
Create an algorithm that accepts the coordinates X and Y of some point and 
indicates which quadrant (1, 2, 3 or 4) the point falls into.  If the point falls on
an axis, the quadrant should be indicated as value zero. 
9. Gas
Create an algorithm that inputs sequences of two values Miles and Gals 
representing the odometer mileage and the gallons of gasoline at a 
succession of refills.  The algorithm is to compute and output the immediate 
average miles-per-gallon (labeled Short for short range), and also the overall 
average mpg (since the beginning of the data), 



which is labeled Long for long range.  A typical input-output sequence follows
(and should end with negative mileage). 
INPUTS OUTPUTS
Miles Gals Short Long
1000 20
1200 10 20 20
1500 20 15 16.67
... ... ... ...
10. GPA
The grade point average GPA of a student is computed from all the course 
grades G and units U.  Corresponding to each grade is a numeric value 
(where A has 4 points, B has 3 points, etc.).  The products of each grade 
point and its number of units are then summed.  This sum is divided by the 
total number of units, to yield the grade point average.  Create an algorithm 
to compute the grade point average for a sequence of pairs of values G, U 
(ending with negative values). 
11. Speed
Create an algorithm to analyze the speed during a trip of N stops.  At each 
stop, the distance D and time T from the previous stop are recorded.  These 
pairs of values are then input to a program which computes each velocity (V 
= D/T) and outputs it.  It also ultimately indicates the maximum speed on the
trip, and the overall average (total distance divided by total time). 
SAMPLE RUN (N = 5)
D T V
45 1 45
100 2 50
55 1 55
120 2 60 Avg = 380/8 = 47.5
60 2 30 Max = 60
12. Unbiased Mean
In some sports, a number of judges each ranks performance on a scale from 
1 to 10.  To adjust for biases, both the highest and lowest values are 
eliminated before computing the average.  Create an algorithm to compute 
such an average for M judges on N performances. 
Problems on Loops and Nests
13. Once More
What action is performed by the following algorithm?
Problem 13
14. Disproof
Show that the following two pieces of algorithm are not equivalent. 



Problem 14
15. Expo
The exponential function  can be computed from the first N terms of this 
series: 

a. Create an algorithm to compute this, assuming that Fact and Pow are 
available as sub-algorithms.  (See Pseudocode 6.9 and Chapter 5, Problem 
20 for more details on Fact and Pow.)
b. Create another algorithm that does not call any other sub-algorithms, 
and also does not keep recomputing the factorial or power (but uses 
previously computed results, such as 5! = 5¥4!). 
16. Down Timer
Create a timer to count down from a given number of hours, minutes and 
seconds to zero.  At intervals of five seconds, it outputs the time (remaining 
to zero). 
17. Pythagorean Triplets
Construct an algorithm to produce all integers x, y, and z that satisfy the 
Pythagorean theorem (relating the sides of a right triangle): 

(where )
Let x, y, and z be positive integers, all less than some fixed input value M 
(say 100). 
18. Thanks
Create a general algorithm which outputs “THANK YOU” for a total of N times
(where N is input).  This greeting is printed three times per line (possibly less 
on the last line).  There is a blank line between every dozen (twelve) 
greetings. 
Problems on Types:  Character and Logical
19. Logical Swap?
Prove (or disprove) the fact that the following two algorithms swap the 
values of the logical variables, P and Q. 
20. Logical Less
If False is defined as less than True, draw a truth table for the operation P < 
Q.  Draw also a table for P ≥ Q. 
21. Binconvert
Create an algorithm to convert a sequence of binary input characters (not 
integers) into their corresponding decimal values.  For example, 1101 is the 
decimal 13. 
a. Write the algorithm, if the input is read from left to right (ending with a 
period). 
b. Write the algorithm, if the input is read from right to left (ending with a 
blank). 
22. When In Rome... 



One method for converting an Arabic number into a Roman number is to 
separately convert each digit (the units, tens, hundreds, and thousands 
positions) as shown: 

1 9 8 4
M CM LXXX IV

Write an algorithm that accepts as inputs any numeric values up to 3999, 
and outputs the corresponding Roman numbers. 
a. Do this, if the number is entered digit by digit (least significant digits 
first, like 4 8 9 1). 
b. Do this, if the number is entered digit by digit (most significant digits 
first, like 1 9 8 4). 
c. Do this, if the number is entered all at once, as an integer, like 1984. 
23. XOR-cise
Prove (or disprove) the following cancellation property for the usual OR and 
the exclusive-or, XOR. 
a. If (A OR B) = (A OR C)

B = C
b. If (A XOR B) = (A XOR C)

B = C
24. Translate
Convert the following conditions into Logical statements (using ANDs, ORs 
and NOTs). 
a. Neither A nor B. 
b. Either A or else B. 
c. Exactly two of the three variables A, B, C are True. 
d. An odd number of the three variables A, B, C is False. 
Chapter 7   Better Blocks
We have seen in earlier chapters how to decompose a solution into its 
components.  We will continue here in a more formal manner.  This chapter 
considers the very important problem of breaking up a program into smaller 
pieces called subprograms.  As was the case for the algorithm examples we 
have seen, there are many ways to break up a program.  Some are better 
than others, and this chapter shows how to choose the better ways.
Chapter Outline
7.1 Preview 270
7.2 Subprograms 270
How to Simplify Large Programs 270
What are Parameters? 275
Data Space Diagrams 279
7.3 Parameter Passing 281
Passing Parameters In and Out 281



Special Cases 285
Some Examples...291
7.4 Bigger, Leaner, and Meaner Programs 300
Using Structure Charts 300
Contour Diagrams 303
Parameter Crossing   A Common Mistake 306
Minimizing Coupling, Maximizing Cohesion 307
Deeply Nested Subprograms 309
Dates Example 311
7.5 More Types of Subprograms 312
Recursion   Self-Referencing Subprograms 312
Functions 314
Modules 316
7.6 Review   Top Ten Things to Remember 317
7.7 Glossary 319
7.8 Problems 320

7.1 Preview
We have already used some simple subprograms or sub-algorithms, glossing 
over the manner in which data are passed to them and how results are 
obtained from them.  Data transfers between program and subprograms is 
the subject of this chapter.
We will first consider subprograms, functions and block structurefrom three 
viewpoints:
• Control flow,
• Data flow,
• Data space (introduced for the first time here).
To pass data into and out of subprograms, a special kind of variable called a 
parameteris used.  Parameters are of two kinds, input parameters for passing
data into a subprogram and output parameters for passing data out of a 
subprogram.  Parameters are considered in great detail in this chapter, in 
particular the way in which they are used to pass data.  There are two 
methods by which data are passed through parameters:
• by value for input parameters, and
• by reference for output parameters.
Recursion, the ability for a subprogram to call itself, is also briefly introduced 
here as another control structure.
A number of examples of some small and simple blocks are given, along with
some larger examples:  a payroll program and a change maker program.  
Although the full power of subprograms is mostly felt with large programs, 
the smaller programs of this chapter make it possible to illustrate them in a 
convincing manner.



The chapter ends with the idea of modules, or pieces of a program that are 
written separately, compiled separately, and that are later linked together to 
form the complete program.
Note:  Often in this chapter, the word “sub” is used as an abbreviation for 
“program or subprogram”.

7.2 Subprograms
How to Simplify Large Programs
There are a number of ways to simplify a large program.  The following 
figures illustrate these ways, going from simple program forms to more 
modular forms.  These figures will serve as models on which the examples 
used later in this chapter can be based.
Figure 7.1 No Structure
Program No Structure, shown in Figure 7.1, is a simple program consisting of 
some data and some actions.  Here, the set of actions form a single group or 
subprogram.  All of the data are accessible to all of the actions.  Such data 
are said to be global—known and accessible from every part of the program.
As programs become larger, they quickly become more complex and hence, 
more difficult to understand, create correctly and modify.  A program that is 
more than a thousand line long is very difficult to keep in one’s mind.  A 
program that is a hundred thousand lines long is generally too much for one 
programmer to handle and the work must be split between several 
programmers.  While this eases the load it also adds a problem that has been
the death of many programming project— communication.
As long as the whole program could be kept within the mind of one 
programmer, communication about the way in which the various parts of the 
program worked was easy.  Once this information must be shared between 
several programmers they must communicate.  This is where errors and 
miscommunication start.  The only way in which this problem can be handled
is to split the program’s actions into smaller groups with one programmer or 
a very small team of programmers responsible for each group.  While this 
organization of a program into small groups of actions is essential when 
there are several programmers working on a single programming project, it 
is also extremely helpful when there is only one programmer involved.
You have probably found that if you keep all your papers all mixed together 
in a single pile, you become confused and waste a lot of time looking for 
what you want.  As a result, you likely organize your papers into folders, 
divided according to subject.  So it is with program.  We will now look at four 
different ways in which this organization of a large program can be done.



Figure 7.2 Split Structure
The program Split Structure, shown in Figure 7.2, has been split into groups 
shown as Action groups A, B, C and D.  In practice, there would be many such
groups, possibly hundreds, in a large program.  There is considerable 
communication between the action groups; not only are they linked by flow 
of control they also have access to the same set of global data, which may 
have thousands of separate items.  This means that the programmers 
responsible for the different groups must also communicate.  They must be 
particularly aware of how the other programmers are working with the data.
For example, whenever they need a name for a data item, the programmers 
must be careful to choose a name that is different from the data names 
being used by the other programmers.  Failure to do this might lead to a 
clash where two programmers find themselves using the same “temporary” 
variable Temp in a mutually incompatible way.  Finding and fixing such errors 
can be very time consuming and can lead to stressful and noisy “technical 
discussions”!
To avoid clashes requires communication between all the programmers, 
careful recording of the decisions and discipline.  Techniques such as naming 
conventions where, for example, the names of all variables “belonging to” 
action group C start with the letter C, are only of limited value.
What does one do about variables that are shared between groups B and C? 
Start their names with BC? Very soon, the naming convention becomes too 
complex and the names become difficult to read, impossible to pronounce 
and devoid of any real help in understanding the program.
Clearly, this semi-structured way of breaking down a program is not ideal.  
On a larger scale, most programs that are structured in that way will fail 
because of the complexity of communication between the teams working on 
the various pieces of the programs.
Figure 7.3 Hierarchical structure
The organization of the program in Figure 7.3 is hierarchical and corresponds 
to the top-down development of algorithms in earlier chapters.  The actions 
at the top level (at left) are mainly invocations of subprograms.This makes 
the actions of each of the program parts more independent and the flow of 
control between the parts easier to understand.  However, the data are still 
shared by all the subprograms and we still have the problem of incompatible 
use of the same identifier by different subprograms.  Nevertheless, even in 
this area, there is some improvement.  The data tend to become grouped in 
a way that resembles the hierarchical organization of the actions—a sort of 
“specialization” data.  This occurs because top-level 



subprograms generally refer to different kinds of data than those at lower 
levels.
An analogy to this may be seen in the way in which data are sued in a 
corporation.  For example, the top level people of a corporation are 
interested in the number of employees and the total money paid out to 
them.  They do not need to know directly the number of hours worked by any
individual.  At the lower levels of the corporation hierarchy, the hours and 
rate of pay of an employee must be known, but knowledge of the total 
number of employees is not necessary.
We can improve the previous hierarchical structure by organizing a program 
with localized block structures as shown in Figure 7.4.  Here, some data are 
distributed among the subprograms, and are hidden from the other 
subprograms, thus being protected against being changed by them.
Figure 7.4 Localized block structure
In Figure 7.4, there still remains some global data accessible to all 
subprograms, but fewer of them.  These data are mainly used for 
communication between the subprograms.  This kind of structuring allows 
programming teams to be more independent because they have more 
control over the data that they alone need to know about.
Figure 7.5 Parameterized block structure
One final improvement shows the program organized as a parameterized 
block structure in Figure 7.5.  We have added here to the previous localized 
block structure the interaction between the various blocks of actions.  This 
interaction involves the passing of data between individual subprograms, 
thus communicating only what data are necessary and hiding the rest.
The organization in Figure 7.5 formalizes the communication between 
subprograms.  When data must be shared between subprograms, it is done 
as a “private arrangement” between them instead of using the bulletin board
approach of global variables.  This serves to further reduce the amount of 
global data and the amount of communication between the programming 
teams.
The design challenge to split up a program properly is a hard one.  Sufficient 
data sharing must be allowed as well as adequate data hiding.  In the rest of 
this chapter we will look more closely at the mechanisms required to do this.
What are Parameters?
For more details on black box and glass box views, see Chapter 3, Section 
3.4.
We can describe subprograms the same way we described programs:  from a
bird’s eye view or from a worm’s eye view.  You may remember that in 
Chapter 3, the bird’s eye view was called the 



“black box” or “external” approach.  Its main focus was on what data was 
passed in and out.  The worm’s eye view was called the “glass box” or 
“internal” approach.  Its main focus was on how the data were manipulated.
Figure 7.6 Definition and representation of Max subprogram
The data-flow diagram shown on the left of Figure 7.6 gives an external view 
of the subprogram Max which we already encountered in Chapter 3.  In this 
view, Max is seen as a black box with two inputs X and Y and one output M, 
the maximum of the two values X and Y.
Another external view of Max is shown in the middle of the same figure by 
another black box called Max, having three variables X, Y and M.  These 
three variables are parametersand are used for communicating data with the
programs that use Max.  This view, like the one on the left, shows nothing of 
the way in which M is derived from X and Y.
Finally, at the right of the Figure 7.6, the subprogram Max is defined 
completely with all its detail as a glass box.  Here we can see exactly how 
the value of M is obtained from X and Y.
Although X, Y and M are all parameters of the subprogram Max, X and Y 
serve a different function from M.  X and Y transfer information from the 
caller into the subprogram and are called input parameters.  The parameter 
M works in the opposite way, it transfers the result of the computation out of 
Max, back to the caller.  It is called an output parameter.  The definition of 
the number of parameters, their data type and whether they are input or 
output, form the subprogram’s interface specification.
Parameters are subprogram variables used to communicate data between 
the subprogram and either the main program or another subprogram.
Figure 7.7 Data-flow diagram for Max3
To see how such a subprogram is used, let’s look at a program to find the 
maximum of three variables.  At the left of Figure 7.7, the data-flow diagram 
of the program Max3 shows how we can obtain the maximum of the three 
variables by interconnecting two of the Max subprograms.  The right side of 
Figure 7.7 shows the inner workings of Max3.  As we could have guessed 
from the data-flow diagram, the subprogram Max is invoked(or called) in the 
following two ways:
• In the first call, Max A, B, E, Max3’s variables A, B and E are connected 
to Max’s parameters X, Y and M.  The values of A and B are transmitted to X 
and Y, the input parameters.  The result of the calculation, the maximum of 
the two value X and Y, is transmitted through M, the output parameter, to E



• Similarly, in the second call, Max E, C, L; Max3’s variables, E, C, and L, 
are connected to Max’s parameters X, Y and M.  The values of E and C are 
transmitted to X and Y, the input parameters.  The result of the calculation, 
the maximum of the two values X and Y, is transmitted through M, the 
output parameter, to L.
In the first call, A, B, and E, and in the second call E, C, and L, are said to be 
arguments.  Thus, in a subroutine call, a connection is established between 
the caller’s arguments and the subprogram’s parameters and the values are 
transmitted through this connection.
Let’s look at a non-computer example from everyday life to help us 
understand this “connection” between arguments and parameters:  bungee-
jumping.  Here is a program which, if followed, would make sure a person 
had an exciting day.
Pseudocode 7.1 Program for an exciting day of bungee-jumping
If you prefer, you could go sky-diving instead of bungee-jumping:
Pseudocode 7.2 Program for an exciting day of sky-diving
In both cases, most of the steps in Program Excitement remain the same.  
Only the name of the sport varies:  we call the variable bungee-jumping or 
sky-diving in the program.  If we take a closer look at the line Go do some 
bungee-jumping, we notice that it refers to more than one instruction.
Actually, the line Go do some bungee-jumping is a subprogram invocation.  It
calls SubProgram Go do some dangerous sport and performs its instructions 
by replacing dangerous sport with bungee-jumping each time dangerous 
sport is written.  The variable dangerous sport is the subprogram’s 
parameterand the invocation’s argument.  This program and subprogram are
shown in Figure 7.8.
Figure 7.8 Subprogram Go do some dangerous sport
The steps to follow for bungee-jumping are given in Pseudocode 7.3.
Pseudocode 7.3 Steps for bungee-jumping
Notice that the subprogram is general enough so that is may be used for just
about any risky sport:  bungee-jumping, sky-diving, heli-skiing, and so on.  Its
parameter remains the same for each of them.  However, as the sport 
practiced changes, so does the main program’s argument.  If you preferred 
to go sky-diving, as mentioned above, only the argument bungee-jumping 
would need to be changed.  The rest of the program (including the 
subprogram) would remain as is.  Figure 7.9 shows our Excitement program 
modified for sky-diving.
Figure 7.9 Excitement program using sky-diving
Data Space Diagrams
In previous chapters, when we considered sub-algorithms and subprograms, 
we concentrated on the flow of data (data-flow diagrams) and the flow of 
control (flowcharts, flowblocks, and 



pseudocode).  We have just seen how during a subprogram invocation, a link 
is established between its call’s arguments and the subprogram’s 
parameters and that this link is used to transmit data.  Now we need to be 
more complete.  We also must concentrate on the space occupied by the 
data and on how the data values are communicated from one space to 
another.  
To see these algorithms in more detail, see Figures 3.32, 3.24, 3.25, 3.26 and
3.35.
To introduce the concept of a data space diagram, let’s consider again the 
Divide subprogram.  We already saw Divide in Chapters 3 and 5, and used it 
in many algorithms such as Change Maker, Convert grams, and Decimal to 
Binary.  A particular version of the Divide subprogram is shown in Figure 
7.10.
Figure 7.10 A version of the Divide subprogram
On the left of Figure 7.10, there is a data-flow diagram of Divide, showing 
that it has four parameters.  Two of them, Num and Denom, are passed in 
and the other two, Quot and Rem, are passed out.
On the right of the same figure, the corresponding data space diagram 
shows the actual space occupied by the variables associated with the 
subprogram.  Also shown here is the pseudocode of the subprogram, from 
which we see that Divide makes use of a temporary variable Count in the 
course of performing the division.  Count is private, or local, to Divide.  
Programs that make use of Divide do not need or have access to Count.
Note: In this chapter, only parameters that pass values out of a subprogram 
are underlined.  The corresponding arguments are not underlined.
Also, in the pseudocode for the subprogram (Figure 7.10), the title line shows
the names of the subprogram’s parameters, Num, Denom, Quot and Rem.  
The underlining of the names of two of the parameters, Quot and Rem, 
denotes that their values will be passed out of the subprogram.
The following conventions are used in data space diagrams:

1. Subprogram parameters, both input, like Num and Denom, and 
output, like Quot and Rem, are drawn at the left of the diagram.

2. Input parameters, like Num and Denom, are drawn as boxes at 
the top left.  Input parameters correspond to the arrows pointing into a data-
flow diagram.

3. Output parameters, like Quot and Rem, are shown as dotted 
boxes at the bottom left.  Output parameters correspond to the arrows 
pointing out of a data-flow diagram.



4. Local variables, like Count in our example, are accessible only 
from within a subprogram and are drawn at the upper right of the data space
diagrams.  Local variables have no meaning outside the subprogram, and are
used to hide or protect any data that have no need to be accessible from the 
outside.

5. Solid boxes used for local variables and input parameters 
represent actual memory locations within the subprogram, where the values 
are stored.

6. Dotted boxes used for the output parameters do not represent 
actual space.  They refer or point to actual memory locations outside the 
subprogram.
Figure 7.11 Data flow and data space diagrams
Figure 7.11 presents a general example of a data flow and data space 
diagram for a subprogram Sub with five parameters.  The data space 
diagram at the right of the figure also shows the connections between 
arguments and parameters for this invocation of Sub:
Sub(A, B, C, Y, Z)
Looking at this invocation, you might have noted that we have slightly 
changed our notation for pseudocode subprogram invocation.  Earlier, in the 
Max example of Figure 7.7 above, we used the invocation Max A, B, E.  
However, when the number of parameters of a subprogram is large, it is 
clearer to enclose the corresponding arguments between parentheses as we 
have done for the call to Sub, and we will do that from now on, irrespective 
of the number of parameters.
Figure 7.12 The Change subprogram
The subprogram Change, shown in Figure 7.12, has six parameters:  an 
amount tendered T and a cost C, which are input, and the number of 
quarters Q, dimes D, nickels N, and pennies P that form the change, which 
are output parameters.  There is also a local variable R, representing the 
remaining money at each stage during the computation of the change.
Figure 7.13 Change as a program
An example of this is the Change Maker programs (all 1 through 4) of 
Chapter 5, Section 5.7.
Let’s say Change were a main program:
• There would be no parameters,
• All of the variables would be local to the main program—in other words
they would become global variables.  Remember that global variables are 
accessible to all parts of the program, including to any subprograms the 
program involves.
Now that we know the basics, we are ready to examine more closely just how
data are input and passed in and out of subprograms.



7.3 Parameter Passing
Passing Parameters In and Out
As we saw in the previous section, there are two kinds of parameters to 
subprograms:  
• Input parameter:  the value of the argument is used in the subprogram
but is not changed by the subprogram.
• Output parameter:  the value of the argument is changed by the 
subprogram and any previous value of the argument is destroyed.  This 
previous value of the argument may or may not be used by the subprogram, 
depending on the subprogram’s interface specification.
The actual way in which the data are passed in or out of a subprogram 
depends on whether they are input parameters or output parameters:
• Input parameter:  the parameter behaves as a local variable that is 
initialized by the value of the argument.  Once this initialization has taken 
place, the link between the argument and parameter is broken.  Thus, even 
though the subprogram may change the value of the parameter, this has no 
effect on the corresponding argument.  Since only the argument’s value is 
used, the argument can be a constant, variable or expression.  This 
mechanism for passing data is called pass by value.
• Output parameter:  the parameter is linked to the argument in such a 
way that all references to the parameter in the subprogram become 
references to the argument, which must be a variable.  Any change to the 
value of the parameter by the subprogram is a change to the value of the 
argument.  Thus, the argument and the parameter become equivalent during
this invocation of the subprogram.  This mechanism for passing data is called
pass by reference.
These two methods will be illustrated first by a simple program, 
AverageExample, that uses the Divide subprogram, and later by another 
program, Change, that also uses Divide.
Figure 7.14 give two different views of the subprogram Divide.  It includes a 
data-flow diagram and a data space diagram with a description of the 
algorithm in pseudocode.  The data-flow diagram shows the invocation:
Divide(A + B, 2, C, D)
where input parameters Num and Denom are initialized with the values A + 
B and 2, and where output parameters Quot and Rem are made equivalent to
C and D.
Figure 7.14 Two views of subprogram Divide



Our program Average Example is shown in Figure 7.15 and uses this same 
subprogram Divide to find the average of two values A and B.  It also 
displays “Exactly” when the computed average is exact.  Otherwise, it 
displays “Approximate”.
We will use our Average Example program to describe in detail what happens
when a subprogram is invoked.  The statement that invokes the Divide 
subprogram is the same as before:
Divide(A + B, 2, C, D)
Executing this invocation causes the following sequence of actions:

1. The point of return in AverageExample is immediately noted.  
The point of return is the point to which control will return after Divide has 
completed its work.  Here, the point of return is the statement:  Output C.  
Remember from the last section that only solid boxes take up memory space.

2. The variables for the input parameters for Divide and local 
variable are set up.  We prepare memory space to hold the values for Num, 
Denom, Count.  Note that no memory space is reserved for the two output 
parameters Quot and Rem.

3. The links between the Average Example program and the Divide 
subprogram are established by setting up a correspondence between the 
arguments in the invoking statement Divide(A + B, 2, C, D) and the 
parameters shown in Divide’s header Divide(Num, Denom, Quot, Rem)
a. The expression A + B is evaluated to 7 and that value is copied into 
Divide’s variable Num.
b. The value 2 is copied into Divide’s variable Denom.
c. The name of AverageExample’s variable C is linked to Divide’s 
parameter Quot so that Quot acts as an alias for C.
d. The name of AverageExample’s variable D is linked to Divide’s 
parameter Rem so that Rem acts as an alias for Average Example’s variable 
D.
Figure 7.15 The program Average Example invoking Divide

4. Subprogram Divide is executed:  its actions are carried out.  Each
time the output parameters Quot and Rem are modified (by the Set Rem to 
Rem-Denom and Set Quot to Count statements), the actual values that are 
changed are those of Average Example’s variables C and D.

5. The memory space for Divide’s variables, Num, Denom and 
Count is released.  If the subprogram Divide were re-invoked, a completely 
new memory space would be used for these three variables.

6. Control is returned to Average Example at the point of return, 
which is Output C.



This simple example might seem a bit complicated when we look at it with 
that much detail! Be sure to understand it completely as it illustrates the two
methods by which data are passed between a program and an invoked 
subprogram:
• By Value:  The arguments (A + B, 2) corresponding to Divide’s 
parameters Num and Denom were passed by value.  With this method, an 
argument (which can be an expression like A + B or a constant like 2) is 
evaluated and copied into the temporary space allocated to the 
corresponding parameter in the subprogram.  If this value is then changed in 
the subprogram, the change remains local to the subprogram and does not 
affect the original corresponding variable in the calling program.
• By Reference:  The arguments (C and D) corresponding to Divide’s 
parameters Quot and Rem, which were underlined in Divide’s header, were 
passed by reference.  With this method, the parameters of the called 
subprogram become aliases for the actual variables in the calling program.  
This requires that arguments be variables.  Whenever the parameters of the 
subprogram are assigned new values (as in Set Quot to Count), it is the 
values of the corresponding arguments in the calling program that are 
actually changed (like C in this instance).
To help you remember the difference between these two methods, we can 
say that passing parameters between program and invoked subprogram can 
be done via two channels of communication:
• By Value:  one-way communication from calling program to invoked 
subprogram
• By Reference:  two-way communication.
Deciding on which way to pass parameters is usually clear from the data-flow
diagram.  Parameters that are input (with arrows into the box) should be 
passed by value:  in Figure 7.14 this is the case for parameters 1 and 2.  
Parameters that are output should be passed by reference:  in Figure 7.14 
this is the case for parameters 3 and 4.  Sometimes, parameters serve a dual
role—both input and output.  The subprogram uses the value of the 
argument and then modifies it.  Such a parameter is called an update 
parameter and is passed by reference so that its modified value can be 
passed back to the caller.  We will illustrate this with many more examples in 
the following sections.
Note: Arguments passed by value can be variables, expressions, or 
constants.  Arguments passed by reference can only be variables.  They 
cannot be expressions or constants.
Special Cases



In the previous section, we were introduced to the communications between 
programs and subprograms via parameters.  Among all possible cases for 
subprograms, there are two special cases:
• Subprograms with no parameters (only local variables), and
• Subprograms with only parameters (no local variables).
We will now take a look at both of these extreme cases in order to improve 
our understanding of communications among subprograms.
The case of a “parameterless” subprogram is illustrated by the example in 
Figure 7.16.  There, the main program has a global variable A and the 
subprogram has one local variable B.  The main program communications 
with the subprogram through the global variable A.
Figure 7.16 Parameterless communication with name duplication
In Figure 7.16, A is being used rather like our mailboxes at home:  not only to
receive mail (the results of the subroutine’s calculation) but to send mail (the
data to be used by the subroutine).  This use of global variables is fairly 
common but it is not recommended because it makes the program more 
difficult to understand.  The problem is that when you read the invocation 
Sub1(), there is no indication that the global variable A is being used as a 
communication channel and its value will be changed.  To discover this, you 
must study Sub1 in detail.  This is not practical.  Such implicit uses of global 
variables often lead to hard-to-find problems.
In the example in Figure 7.16, the names of all the variables are different.  
What would happen if this were not so and one of the local variables in the 
subprogram were the same as the name of a global variable? This is the 
situation shown in Figure 7.17.
Figure 7.17 Parameterless communication
In Figure 7.17, there is a main program with two variables A and B, and a 
subprogram with two local variables B and C.  Notice that we have used the 
same name B to refer to two different variables, one in the main program 
and one in the subprogram.  We have done this on purpose to illustrate the 
independence of name spaces.  In practice, it is not recommended to use 
identical names in different parts of a program even though it is allowed.  We
will say more about this in a later section.
When we have subprograms nested in the main program or within other 
subprograms, access to the various variables is determined by the rules in 
Figure 7.18.
Figure 7.18 Rules on using variables in subprograms
Let’s apply these rules to the example of Figure 7.17.



1. When the main program calls subprogram Sub2, it does so with 
the statement Sub2() where the argument list is empty because the 
subprogram has an empty parameter list.

2. Subprogram Sub2 assigns values to the three variables A, B and 
C, beginning with Set A to 1.  First, since there is no variable A within Sub2 
(Rule 3), it looks for the variable A in the next higher block, the main 
program in this case.  It finds A in Main Program and sets this to the value 1. 
Let’s call this variable AMain to show where it is located.

3. The next variable B is found within Sub2 (Rule 2), so that BSub2 
receives the value 2.  The outer variable BMain cannot be accessed by Sub2 
since BSub2 exists and was found first (Rule 3).  Its value was never set and 
remains undefined, denoted by “??”.

4. Finally, the variable CSub2 is assigned the value 3 (Rule 2).
5. After Sub2 is invoked, the Main Program is to output A, B and C.  

Remember that by Rule 1, A, B and C can only be variables local to the Main 
Program.  So Main Program first outputs the value of A (Rule 2), which is 1.

6. Main Program then attempts to output variable BMain, but fails 
as BMain has no value (Rule 2).

7. Finally, the attempt to output the value of C also causes an error 
because the main program cannot access CSub2 (Rule 1).
Tip 1: Only use parameters when communicating between programs and 
subprograms.
Tip 2: Try to use different variable names whenever possible.
It should now be clear that we can use local variables to hide some values, 
just as Sub2 hid the values 2, and 3 of BSub2 and C.  This simplifies the 
program structureand makes the resulting program much less prone to error.
However, the access to variables at higher levels—global variables—provided
by Rule 3 is very dangerous and should be avoided.  Why? Because, as we 
said before, communication through global variables is not explicit and 
occurs sometimes without us being aware of it.
Figure 7.19 Parameter-only communication
Our next example, in Figure 7.19, uses only parameters to communicate, and
Sub3 has no local variables.  The main program has two global variables X 
and Y, and the subprogram has two parameters Y and Z.  Notice that we 
have again used the same variable name Y in both the main program and 
the subprogram, but there are no ambiguities as there were in Figure 7.13.
The subprogram header Sub3(Y, Z) indicates that the first parameter, Y, is 
passed by value and the second parameter, Z, is passed by 



reference.  When the subprogram is called, the value of the first argument, 
X, is copied into YSub2, is doubled and then copied into the space of the 
second argument, YMain.
Note: It is still preferable to use different variable names when possible.
Figure 7.20 General communication
In general, subprograms have both parameters and local variables, as shown
in Figure 7.20.  You will note several things here:
• Variables P and Q are global variables, which could be accessed by the 
subprogram Sub4, but should not be!
• Main Program has 2 more global variables:  R and S.  Normally they too
would be accessible to Sub4.  However, Sub4’s parameters are also called R 
and S.  This means that any references to R and S in the subprogram are to 
those parameters.  The global R and S of Main Program are therefore not 
accessible to Sub4.
• When the subprogram is invoked, the first argument is passed by 
value.  The value of variable Q is copied into the variable RSub4 and the link 
with Q is lost.  So the value of Q cannot be modified by the subprogram even
when it makes an assignment to RSub4.
• The second argument is passed by reference, and every reference to S 
in the subprogram refers to RMain.
• Any references to variable S in the main program refer to the global S 
(Rules 1 and 2).
• Variable T, local to subprogram Sub4, is inaccessible from Main 
Program (Rule 1).
You might already have noted in the preceding examples that names are 
very significant.  You have also seen in the last three examples that the same
names may refer to different data spaces and have different meanings as 
shown in Figure 7.21.  For example, the same name R is the result in the 
main program and is the quantity received in the subprogram.  Also, S is 
both the sum in the main program, and the value sent by the subprogram.
Figure 7.21 Table of names and meanings
Such conflicts in naming can become very confusing for humans, but are not 
a problem for computers.  Normally, such short and duplicated names are to 
be avoided, but if they happen to be chosen, they cause no problem for the 
computer and confuse only the reader.  Obviously, in our small examples we 
could easily have chosen different names that could have helped the reader 
understand more easily.  The important thing to note is that, in large 
programs where different people work on many parts, we do not need to 
have some elaborate scheme to prevent programmers from using names 
already used by others.



In most cases the names chosen would also be more meaningful, as they 
have been in the examples of the preceding chapters.  However, here we 
have used short names to keep the lists of subprogram parameters and 
arguments short as well.  In practice, we will always use meaningful names.
Tip: Always use meaningful names for variables, such as Result or 
Received.  This way, your algorithms are easier to read.
Some Examples...
Figure 7.22 Data-flow diagram for Change program
See Figure 3.32 for the original Change Maker data-flow diagram.
Let’s consider an algorithm Change, which calls the subprogram Divide three
times.  The Change algorithm inputs the amount Tendered and the Cost and 
outputs the number of Quarters, Dimes, Nickels, and Pennies.  It was 
introduced in Chapter 3 and is shown in the data-flow diagram of Figure 7.22.
Figure 7.23 Data space diagram for Change program
The data space diagram of Figure 7.23 has been extended to show snapshots
of the subprogram calls.  Even though the figure shows three instances of 
the Divide subprogram, it should be noted that only one Divide subprogram 
exists at any time.
• The first call to Divide passes the value of the expression Tendered – 
Cost and the constant 25 as the denominator.  Divide then returns the 
quotient in Quarters (2) and the Rest of the change (8).
• The second invocation of Divide passes the value of Rest obtained from
the first call and the constant 10.  Divide then returns the quotient in Dimes 
(0), and the same Rest (8).  The correspondence between the arguments 
Rest, 10, Dimes, Rest and the parameters Num, Denom, Quot, Rem is 
established by their order of listing from left to right, as shown below.  The 
fact that two arguments are the same variable (Rest) causes no problem.  
The value of Rest is used to initialize Num which is divided.  When Rem is set
to the remainder, this actually sets a new value in Rest, as illustrated in 
Pseudocode 7.4.
• The third and last call to Divide passes in the Rest, and the constant 5, 
and returns the number of Nickels and also of Pennies.
Pseudocode 7.4 Two arguments with the same variable
Normally, the examples we have just seen on how to pass parameters should
be sufficient to understand everything about parameter passing.  However, 
you will need more practice in actually passing parameters to reach 
complete understanding.  We will look at a few more examples to help you 
with it.  In fact, many aspects of parameter passing can be illustrated by the 
familiar simple Divide subprogram.  We will look at some of these aspects 
here.



Figure 7.24 The subprogram invocation Divide (A, B, C, D)
See Figure 7.15 for a closer look at Average Example.
Here is a simple program (Figure 7.24) very similar to the already-seen 
Average Example program.  Let’s review how the subprogram Divide works.  
Divide(A, B, C, D) firstly copies the values of A and B into Num and Denom.  
The quotient Quot refers to C and Rem refers to D.  The output of Main here 
are the values of A, B, C, and D:  1, 2, 0, 1.
Drawing Data space diagrams such as the one above clarifies parameter 
passing.  You may note that Quot and Rem were written inside the dotted 
boxes.
Tip : Writing the output parameter names inside the dotted boxes can 
prevent you from making the common mistake of putting values in the 
boxes.  Remember that passed-out parameters are only references to actual 
data spaces.  Also, using arrows to match arguments with parameters can be
very helpful.
We will use this simple Main program to see how changing subprogram 
arguments can affect output.  The Main program contains 4 variables:  A, B, 
C, D.  These 4 variables can be passed in/out of Divide at lease 4 ¥ 4 ¥ 4 ¥ 4 
= 256 different ways (such as AABC, AACB, ABCD, ABDC, ACBD, and so on).  
The next few examples illustrate some of these variable combinations.
Figure 7.25 Subprogram invocation Divide (D, B, A, C)
In Figure 7.25, the subprogram invocation becomes Divide(D, B, A, C).  This 
time, the values of Main program variables D and B are passed into 
subprogram parameters Num and Denom.  Quotient Quot references A, 
whereas remainder Rem references C.  Again, only A and C of the Main 
program are modified, and the output is 2, 2, 0, 4.  In our next example, the 
invocation becomes Divide(B, B, B, D).  Figure 7.26 shows the corresponding 
data space.
Figure 7.26 Data space for invocation Divide (B, B, B, D)
In Figure 7.26, the same value of B, which is 2, is copied into both 
subprogram parameters Num and Denom.  The action of Divide produces a 
quotient of 1 and a remainder of 0, as it is dividing 2 by 2.  Now Quot also 
refers to variable B of the main program, so that value is now changed to 1.  
The zero remainder is assigned to variable D of the Main program, and the 
output is then 1, 1, 3, 0.
In this case, The main program’s variable B was actually used twice to copy a
value into Num and Denom, and that same variable B was also referenced by
Quot, and then modified when a value was assigned to Quot.  What would 
happen if we used the variable B for all 4 arguments?
Figure 7.27 Data space for invocation Divide (B, B, B, B)



Figure 7.23 shows the data space for this invocation.  As in the previous 
example, the same value B, which is 2, is copied into the two subprogram 
parameters Num and Denom.  The quotient and remainder are again 1 and 
0.  However, this time, both Quot and Rem refer to the variable B— the 
names Quot and Rem are aliases.  What value does B finish with? To know 
this, we need to know exactly how the Divide algorithm works.  Pseudocode 
7.5 shows the complete Divide algorithm.
Pseudocode 7.5 The complete Divide algorithm
Remember, every time the value of either Quot or Rem is set, the value of B 
is changed.  The last thing that happens before the end of the subprogram is 
that the value of Quot is set to the quotient 1, which is stored in Count.  
Thus, the final value of B is 1.  Now, suppose that instead of the above 
algorithm, the following equivalent algorithm (Pseudocode 7.6), which does 
not use a local variable, had been used.
Pseudocode 7.6 Equivalent Divide using a local variable
What would then be the final value of B? This is more difficult to analyze.  
Work it out for yourself, it is not 1.
Note: Using the same variable as an argument to two different output 
parameters, in a single invocation of a subprogram ,leads to results that are 
difficult to predict.  Don’t do it!
In our next example, Figure 7.28, the invocation was changed to 
Divide(B¥D, C+B, A, C), and the data space for the invocation shows that 
expression values can be passed into a subprogram.
Figure 7.28 Data space for the invocation Divide (B ¥ D, C + B, A, C)
In this case, Figure 7.28, the evaluation of the two expressions is done first:  
B¥D = 2 ¥ 4 = 8 and C+B = 3 + 2 = 5.  Then, the values of 8 and 5 are 
copied into the subprogram parameters Num and Denom producing a 
quotient Quot of 1 and a remainder Rem of 3.  Since parameter Quot refers 
to variable A, the value of A is set to 1.  Similarly, since parameter Rem 
refers to variable C, its value is set to 3, and the output is then 1, 2, 3, 4.  
The four values are exactly the same as before the subprogram call.  What a 
complex way of doing nothing!
Figure 7.29 Data space for invocation Divide (11, 7, A, B)
Figure 7.29 shows the data space for the next example where the invocation 
has become Divide(11, 7, A, B).  This shows that constants can be used as 
value arguments.  Here, 11 is divided by 7 to yield a quotient of 1 and a 
remainder of 4.  The subprogram quotient Quot refers to variable A and Rem 
refers to variable B, so the output is 1, 4, 3, 4.



Figure 7.30 Data space for the invalid Divide (A,B,C,B+D)
The invocation Divide(A, B, 3, B + D), Figure 7.30 has two errors.  The 
problems are:
• The third argument is a constant.  Arguments passed by reference 
must be variables.
• The fourth argument is an expression.  Again, arguments 
corresponding to output parameters can only be variables.
So far in this chapter, we have looked at subprograms and the way they 
communicate with their environment through parameters.  We have 
identified methods of passing parameters:  by value and by reference, 
corresponding to one-way and two-way communications.  Let’s look at a few 
more examples that illustrate the following ways of passing parameters:
• Passing input parameters only,
• Passing output parameters only,
• Passing input and output parameters.
Our first example, subprogram Spellout, is shown in Figure 7.31.  It outputs 
some small numerical values, not as numbers but spelled out as a word.  The
pseudocode shown in the figure only spells out integers in the range 0 to 4, 
but you could extend it easily.  There is only one parameter, the input 
parameter Number, with the number to be spelled out.  Nothing is passed 
out.  However, the result of the invocation is the output of a value.
Figure 7.31 Parameter passing   passing in only
The second example in Figure 7.32 shows another subprogram, EnterPos, 
which uses an output parameter, passed by reference, to return a value to 
the calling program.  The subprogram’s pseudocode shows that EnterPos first
prompts the user to enter a positive value, and then inputs the Value.  As 
long as this Value is not positive, the subprogram keeps outputting the 
message “Try again” and inputting a new Value.
Figure 7.32 Parameter passing   passing out only
As soon as a positive Value is entered, the loop terminates.  The subprogram 
then assigns that positive Value to the output parameter Result, setting the 
value of Age in the first invocation and Height in the second invocation.  
Using Result as an output parameter like this allows the subprogram 
EnterPos to be recycled.  EnterPos can be used over and over to enter values
into many different variables (such as Age and Height in the Opinion Poll 
program shown in Figure 7.32).
Figure 7.33 Passing parameters out only   passing “in-out” or through



Our third example shows why we can refer to parameters passed by 
reference as “passed in-out” or “passed through”.  This may seem a little 
confusing at first, but let’s take a look at Figure 7.33.  Shown is a Main 
Program which calls subprogram Sort3.  Sort3 sorts three values A, B, C into 
non-decreasing order with the help of another subprogram, Sort2.
Sort3’s parameters A, B, C are all passed by reference, as we can see by the 
underlining.  Remember that parameters passed by reference are aliases of 
variables from the calling (sub)program.  Here A, B, C are all passed by 
reference:  they are all aliases of some variables.  Which variables? Num1, 
Num2, and Num3.  What is the calling (sub)program? Main Program.
Since A, B, C are aliases of Num1, Num2, and Num3, Sort3 can perform 
whatever operations it wants on Num1, Num2, and Num3.  In other words, 
Sort3 has total control over those variables.  When the variable A is called on
for an operation, the value of A used is that of Num1.
So, it is as if we copied this main program value into Sort3 and then 
performed the operation on it, as if we were passing values in and out (hence
the name “in-out” or “through”).  But we did not really copy it.  To actually 
copy Num1 into Sort3, we would have to add a parameter passed by value 
and Sort3 would look like Sort3(Z, A, B, C).  Sort3 would have to have an 
extra box labeled Z in its top left corner.  In fact, we could have made Sort3 
with 3 parameters passed in and A, B, and C passed out.  Then we could say 
that parameters are passed in and passed out (not “in-out”).
The interesting thing to note here is that when Sort3(A, B, C) is executed, the
original values of Num1, Num2, Num3 are destroyed.  Depending on the 
problem to be solved, this may be all right.  However, it is usually preferable 
to pass the values in by value, and then out by reference, for example:  
Sort3(Z, X, Y, A, B, C).  This way the original Num1, Num2, Num3 values 
would be preserved.
For a closer look at Swap, see Chapter 5, Figure 5.18.
When examining Figure 7.33 closer, you may notice that subprogram Sort2 
sorts two values with the use of 4 parameters:  two passed by value and two 
passed by reference.  This means that it leaves the original values A, and B 
(which in turn reference Num1 and Num2) untouched.  Sort2 could just as 
well been created with only 2 parameters passed by reference (or “in-out” as
we saw earlier).  You may note that Sort2 functions by swapping two values if
Small is bigger than Big.  The actual swapping could have been done by 
invoking a third subprogram, Swap.



7.4 Bigger, Leaner, and Meaner Programs
Using Structure Charts
So far, we have considered small programs and subprograms, with little 
interaction between them.  We will consider now a more complex system to 
illustrate the inter-relations among actions, data spaces and data flows.  The 
example we use is MainPay, an extended payroll problem that is sufficiently 
complex to suggest the power of subprograms in large systems.
Figure 7.34 Algorithms and sub-algorithms for Main Pay
The algorithms and sub-algorithms that comprise MainPay are shown in 
Figure 7.34 as break-out diagrams of pseudocode, with the dotted lines 
representing the flow of control when subprograms are called.  The program 
MainPay inputs the number of employees Num, and then executes a loop 
Num times, once for each employee.  The body of the loop calls NetPay with 
Total as an argument, so that it can update the total pay as each employee’s 
pay is calculated.  Finally, MainPay outputs the Total amount paid out.
Subprogram NetPay calls subprograms GrossPay and Deductions to be able 
to calculate the Actual Pay and output it, and Actual Pay is also used to 
update the Total in MainPay.  The GrossPay subprogram computes the gross 
Pay in the usual way.  Subprogram Deductions obtains the miscellaneous 
deductions Misc by calling GetMiscDeductions, and adds this to the Tax, 
which is a simple percentage Rate of the Gross pay.  All these variables are 
either local or global and we will use a data space diagram to show where 
they belong.
Figure 7.35 Data spaces of Main Pay and its subprograms
The data space diagram of MainPay, in Figure 7.35, shows how data are 
distributed among the subprograms.  Notice first that the main program 
requires only three variables of its own (the count Num, the loop control 
variable EmpNum, and the amount Total), and need not have access to other
variables at lower levels! Notice also that the gross pay appears three times 
in three different subprograms:

1. The actual gross pay is first computed in subprogram GrossPay 
and assigned to parameter Pay which is passed by reference.

2. Because the parameter Pay is an alias, this computed gross pay 
is in fact assigned to variable Gross in subprogram NetPay (the GrossPay call 
argument).

3. The same Gross is also passed to subprogram Deductions as a 
value parameter where it is used to initialize Deductions’ parameter Gross.  
Notice that, although both NetPay and Deductions 



have variables called Gross, they are quite distinct and occupy separate 
storage.
It is important to see that subprogram Deductions did not get the gross pay 
directly from subprogram GrossPay, but indirectly through subprogram 
NetPay at a higher level.  This sub-dividing and hiding of data spaces is very 
significant in large systems.  It localizes the various data values, and 
respects the hierarchy of subprograms defined by the structure chart for a 
system like Figure 7.36.
Figure 7.36 Structure Chart for Main Pay
This subdivision of the data space is extremely helpful when you are trying to
find and correct an error in a large program.  It reduces the amount of 
program that you must read and understand before you make a change.  
Making a local change without really understanding all its ramifications is not
good enough.  Even though the program may appear to work after the 
modifications have been made, it may not have been properly tested.  The 
subdivision of the data space clearly defines the boundaries of possible 
ramifications.  This is shown by the big picture of the system as offered by 
the structure charts.
We will have yet another look at the MainPay example by means of a data-
flow diagram, as shown in Figure 7.37.  That figure shows how the external 
data flow in and out of the program, as well as how the data flow between 
the subprograms through arguments and parameters.  The external inputs 
are the Hours, the pay Rate, the miscellaneous deductions Misc, and the 
number of employees Num.  The external outputs are the ActualPay and the 
Total amount paid.
The hiding and sharing of data,  when done properly, leads to a simplification
of the building of the program with minimal interaction between the 
constituent subprograms.  Ideally, each subprogram is provided with only 
what it needs to perform its function:
• At lower levels, the system components need individual details of 
hours worked and rate of pay.
• At higher levels, the system components do not need the same details 
but need instead the total number of employees and the total amount paid.
Figure 7.37 Data flow of Main Pay and its subprograms
For instance, the Deductions subprogram needs the value of the gross pay, 
to use but not modify, in its computation.  However, it does not need the net 
pay or the number of employees.
The interconnection of programs with many subprograms is often shown by 
trees or contour diagrams.  Those are considered next.
Contour Diagrams



Contour diagrams are similar to the data space diagrams we saw earlier in 
Section 7.2.  They are made up of blocks—each representing a piece of 
program with its own data space.  The blocks are nested one within another, 
showing the hierarchy of the program.  A contour diagram of the Main Pay 
program is shown in Figure 7.38.
Notice that there are three types of information shown:
• The program or subprogram names
• Local variables
• Parameters passed in and passed out of the subprogram
As we can see, information can both be shared between blocks, and hidden 
from other blocks.  Block-structured languages (like Algol 60, Pascal, Modula-
2, C, and Ada) take advantage of this sharing/hiding of information.
Figure 7.38 Contour diagram of Main Pay
The variable access rules introduced in Section 7.3 apply directly to the 
blocks.  Let’s see how the rules apply to Figure 7.38:
• Rule 1:  A (sub)program cannot access the local variables of any 
subprograms nested within it.

Here, subprogram NetPay cannot access (use) the local variables 
Break, Hours, Rate, Rate, Tax, Misc, since the subprograms GrossPay and 
Deductions are nested within it.  We could say that these inner variables are 
kept protected from the outside world.  (You will note here that there are 2 
separate variables named Rate in our program, each referring to something 
different.  The one in GrossPay refers to an hourly rate of pay whereas the 
other in Deductions refers to the tax rate.)
• Rule 2:  A (sub)program can access a variable that is local to itself.

Here, subprogram NetPay can access its local variables Gross, Deduct, 
and ActualPay.
• Rule 3:  If a variable does not appear in a subprogram, a search is 
made in the enclosing subprograms.  This search is continued until either:
• The variable is found, or
• The main program is reached.

If the variable is not found in any of these nests, then the variable is 
undefined and there is an error in the program.

Here, subprogram NetPay can access the variables Num, EmpNum, and
Total (as well as its own local variables, as we saw in Rule 2).  We can see 
this by “looking out” of NetPay to the next higher level(s).  In our case, there 
is only one higher level:  the main program.  This rule of “looking out” is also 
called the “most-closely-



nested binding rule”, where the term bindingrefers to the relations between 
variable names and data spaces.
Another useful term to know is the scope of a variable.  This refers to the 
part of a program over which a particular name is “known”, or may be 
referenced.  In our example, the scope of Num is the whole program.  This 
comes about because it is defined in MainPay and nowhere else—by the 
application of Rule 3.  The same is true of EmpNum—they are both global 
variables.
However, this is not true of Total, the third variable defined in MainPay, which
is also defined with a different meaning in Deductions.  Thus, the scope of 
Total defined in MainPay is the whole program except for Deductions.  This 
illustrates the dangers of Rule 3 and how careful we must be in our program 
design to avoid accessing the wrong variable.
Tip: Use different variable names whenever possible.
Figure 7.39 Table of binding for Main Pay and subprograms
Tables of bindingshow how variable names relate to the data spaces of 
various blocks.  A table for Main Pay is shown in Figure 7.39.  There is one 
row for each variable or parameter name, and one column for each 
(sub)program block.  The table is filled as follows:
• If a given name is accessible in a block, the corresponding entry shows 
either “Defined” or “Access”.
• If the name is inaccessible the entry is empty.
• An entry like “Defined” indicates the name is defined in the block 
either as a variable or as a parameter.
• If the entry is “Access” the name is accessible.
• When there is more than one definition, the definitions and accesses 
are numbered to show what name is accessible.
Variables only defined in the MainPay block are global and can be accessed 
from all the subprograms.  Such global variables may seem useful.  For 
example, the number of the employee EmpNum could be accessed directly 
from the NetPay subprogram (without passing it as a parameter) and output 
onto the paycheck.  However, this variable EmpNum could also be changed 
by accident in any of the subprograms.  This kind of error could be very hard 
to find.
Tip: Reference only those variables that are defined in the subprogram in 
which you are working.  Any time you think that using a global variable 
would be simpler, look instead to see how the program’s design could be 
improved to avoid it.  A global variable’s potential for causing trouble is 
much greater than the simplification it can bring to the program.  Access to 
all variables that are not local should be done only through parameters.
Parameter Crossing   A Common Mistake



In order to show how destructive global variables can be, we will look here at
a simple mistake that can turn out to be difficult to trace.  Figure 7.40 is yet 
another variation of the now famous Divide invocation of Figure 7.24.  For the
sake of this example, we replaced the name of the counter “Count” by “C”.
Figure 7.40 Forgetting to declare a local variable
Suppose that in the Divide subprogram, we forgot to declare counter C as a 
local variable.  When C is accessed and modified in Divide, since there is no 
local C defined in Divide, the global C is accessed and modified.  When 
Divide increments C, it actually changes the value of C in Main.  In our 
example, a Numerator of 2 is divided by a Divisor of 1.  However, the result 
is not a quotient of 2 and a remainder of 0 (as it should be) because both C 
and Rem in the subprogram refer to the same value of C in Main!
Let’s take a closer look at what happens.  When the subprogram counter is 
initially set to 0, global variable C is set to 0.  As the actions proceed, global 
C is changed every time C is changed in the subprogram, and also every 
time the remainder Rem is changed in the subprogram.  In fact, the names C 
and Rem in the subprogram are both aliases of the global C.
Although you may already have a good idea of what is happening, let’s trace 
the algorithm step by step (Pseudocode 7.7) to see the detail of the 
subprogram execution.
Pseudocode 7.7 Trace of Subprogram Divide
So this Divide subprogram produces both a quotient and a remainder of 0, 
which is incorrect.  The values output by the program are 2, 1, 0, 0.  Turn 
back a few pages and compare what happened here with the second case of 
Divide(B,B,B,B), Figure 7.27.
In general, such an accidental access of global values has very serious 
consequences because it produces wrong results and is very difficult to find 
and correct.  Although they should know better, there are still some 
programmers who deliberately access global variables from within 
subprograms, inviting disastrous consequences.  Accessing by parameters is 
the only safe way of communicating!
Minimizing Coupling, Maximizing Cohesion
It may be useful to step back from the details of the Main Pay problem and 
return to a view similar to the data-flow diagram of Figure 7.37.  Let’s 
examine the data interactions between the various blocks.  By interactions, 
we mean access to data, either by an argument-parameter transmission, or 
through global variables.  Couplingis a measure of the degree of this 
interaction of the various blocks.



Figure 7.41 Loose coupling
The couplings between the four blocks of Main Pay are shown in Figure 7.41. 
There are essentially only four interactions, each shown by a line connecting 
the blocks.  These respect the hierarchy established by the structure chart of
Figure 7.36.  Most interactions in the figure are through parameters passed 
by reference, which implies a two-way communication, and only one is 
through a value parameter (one-way, input).  Since all the interconnections 
are through parameters, we say that these blocks are loosely-coupled.
Figure 7.42 Tight coupling
In contrast, Figure 7.42 shows a similar set of four blocks.  Here, every block 
interacts in both directions with every other block, forming 12 such 
interactions.  These interactions are through global and local variables.  This 
kind of system, referred to as tightly- coupled, would be quite complex and 
difficult to understand and maintain.
Maintaining a tightly-coupledsystem is difficult because the hierarchy of the 
structure chart has disappeared, and any modification is likely to affect more 
than one module, making it complex and error prone.  In other words, if you 
forget just one of the changes required to keep all the blocks consistent, your
program will, most likely, have an error.
Generalizing the interactions from this 4 -block example to any number N of 
blocks is quite simple.  In the present case, each of the 4 blocks connects to 
all of the remaining 3 blocks for a total of 4 ¥ 3 or 12 interactions.  In 
general, each of N blocks connects to the remaining (N-1) blocks for a total 
of N(N-1) interactions:
• For 5 blocks, there are 5 ¥ 4 = 20 interactions.
• For 10 blocks, there are 10 ¥ 9 = 90 interactions.
• For 20 blocks, there are 20 ¥ 19 = 380 interactions.
As you can see, the maximum number of interactions grows quickly—almost 
as fast as the square of the number of blocks.  If we assume that checking a 
modification implies checking all interactions, you can see why the number 
of interactions must be kept low! That is why loosely-coupledsystems are 
preferred.  They are usually easier to maintain than tightly-coupled ones.
Tip: Try to always make your system is loosely-coupled:  use parameters as 
much as possible when relaying information between your program parts.
A complementary measure to coupling is cohesion.  Coupling is a measure of
the interaction between blocks; cohesion (strength) is a measure of the 
interaction between the elements that constitute the block.  Just as we wish 
to minimize the coupling, we wish to 



maximize the cohesion of each block.  The basic intent of block cohesion is 
to organize the elements of a program so that closely related elements fall 
into a single block and unrelated elements fall into separate blocks.
To return to the MainPay example, subprogram NetPay’s sole function is to 
calculate the total pay Amount.  MainPay has nothing to do with hours and 
pay rate.  Those are functions of GrossPay, or Deductions.  Since we have 
kept closely-related elements together, we can say that the blocks in 
MainPay all have cohesion.
Again, our aim is to create programs that are easy to modify.  Programs that 
are built out of blocks with high cohesion are likely to be easy to modify since
any modification is probably localized to a few blocks, which reduces the 
likelihood of making errors.
Tip: Try to maximize cohesion:  keep closely-related elements together and 
only where needed.
What makes modification of a large program so difficult is the problem of 
maintaining consistency.  Anything you can do during the design step to 
make this easier will help.
Deeply Nested Subprograms
Depending on the programming language used, subprograms can be nested 
many levels deep.  To illustrate deep nests, we show in Figure 7.43 a 
complete ChangeMaker program that is drawn with contours and comprises 
14 subprograms.
Figure 7.43 Contour diagram for ChangeMaker
Some parts of ChangeMaker have already been developed in pseudocode in 
Chapter 4, Section 4.4.
Notice that this contour diagram is lacking some essential things:
• The local variable boxes have not been drawn in.
• The parameters (passed in or out) have not been drawn in either.
• The main program, ChangeMaker, calls four subprograms:  Instruct, 
Make Change, Enter Amounts and Output Change.
• The first subprogram, Instruct, asks if the user wishes instructions.  If 
so, the subprogram produces a printed set of the user instructions.
• The second subprogram is Make Change that actually performs the 
change making computation.  To do this, it calls the subprogram Divide a 
number of times.
• The third subprogram, Enter Amounts, contains five other subprograms
to help input the various values and validate them.  Subprograms InTend and
InCost input and validate the amount tendered and the cost.  Subprogram 
EnterPos is used to enter only positive values, and subprogram Convert is 
used to change the 



numerical values into monetary values.  Subprogram CheckProper checks 
that the cost and the amount tendered are positive and that the cost less 
than the amount tendered.
A more detailed SpellOut is shown in Figure 7.31.
• The last subprogram, Output Change, contains other output 
subprograms and calls them to produce a nicely formatted output.  
Subprogram SpellOut spells the count corresponding to the number of coins, 
and calls Plural to append the character “s” to any written plural 
denomination.  Subprogram CountOut provides a readable output of the 
number of coins, and calls Size to determine the number of digits in a 
number as part of formatting the output values.
Dates Example
So far, we have always tried to develop our various algorithms using a top-
down approach, and this has usually led to better structured solutions.  
However, very often in programming, there is a temptation to create all 
algorithms from their smallest building blocks (starting everything from 
scratch).  We have seen that it is better to create algorithms out of larger 
“abstract” boxes whose exact functions are yet to be defined, and later, 
when we are more advanced in the design, we can define these boxes in 
detail.
In computer applications, dates are a type of data that must often be 
manipulated.  They usually are made of several parts, like day, month, and 
year.  In the next example we will concentrate on date processing.
Figure 7.44 Developing the algorithm ElapsedTime
Our date example will be the creation of the algorithm ElapsedTime, which 
determines the number of days between any two given dates in the same 
year, such as two birth dates.  Figure 7.44 shows the top two levels of the 
solution chosen for ElapsedTime.  Proceeding top-down, the top-level 
program first inputs the two dates, computes the number of elapsed days 
between them, and then outputs that value.
Notice that, at the top level, we refer to the two dates as Date1 and Date2, 
ignoring the fact that they are made up of two separate values:  the month 
and the day.  This abstraction makes it easier to avoid getting bogged down 
in details.  At the next level of InputDate, these constituents are recognized 
since the Month and the Day are input.  However, their combination into a 
single data value is left unspecified in a call to MakeDate, which is, as of yet, 
undefined.
The elapsed time between the two dates could be determined easily by 
ElapsedDays if we knew the date in its Julian form, as the number of days 
from the first of the year.  The number of elapsed days can then be found by 
simple subtraction of the two Julian dates.  In the solution shown in Figure 
7.44, we have assumed that a subprogram, 



NumDate, to compute the number of days from the start of the year already 
exists.
Pseudocode 7.8 The subprogram NumDate to find a Julian date
The subprogram, NumDate, converts a given Date into the number of days 
from January 1, as shown in Pseudocode 7.8.  For example, March 15, l984, 
has a Julian dateof 75, (31 + 29 + 15).  At this point in our development of 
the ElapsedTime program, we realize that in order to find the Julian date, we 
probably need to know how many days there are in February.  For that, we 
need to know the year.  Therefore, we must go back to our sketch of 
InputDate and add a statement to input the year.  Notice that ElapsedTime 
does not have to be changed—this is an example of the advantages of 
designing subprograms with high cohesion.
Since we have only outlined Input Date, little has been changed.  Each date 
now has three components, Year, Month and Day, instead of only two.  This 
need to revise earlier subprogram outlines is typical of the program creation 
process and is a major reason for proceeding top down.  If we had completely
created InputDate, the change would have been much more serious and 
frustrating.

7.5 More Types of Subprograms
Recursion   Self-Referencing Subprograms
The Solver algorithm was first introduced in Chapter 6, Section 6.6.
The problem solving method we introduced in Chapter 2 and used on various
examples is based in part on a “divide and conquer”  approach.  A problem is
divided and the smaller, easier-to-solve problems are divided in turn.  This 
way of doing things can be used to great advantage when developing some 
algorithms.  
For example, if an algorithm, Solver, is developed to solve a specific problem,
in some cases it is possible to apply that same algorithm to a smaller version
of the same problem; this is called recursion.  By repeatedly dividing the 
problem in this manner we eventually reach the smallest case, called the 
base case.  The case is so simple that it can easily be solved.
In essence, the pattern of a recursive solution for Solver is illustrated in 
Pseudocode 7.9.
Pseudocode 7.9 Pseudocode for recursive problem-solving
Thus, recursion is a process where a subprogram will call itself.  Such a self-
referring process may seem unusual at first, but many data structures and 
algorithms are more naturally described recursively.  In this section, we only 
introduce the idea of recursion.  It will be dealt with in greater depth in 
Chapter 8.



Recursion in its simplest form could be viewed as an alternative to the 
iterative form.  To illustrate this, let’s take as an example the computation of 
the square of an integer.  We saw in Chapter 6 that the square of integer 
Num can be computed by summing the first Num odd integers.  A 
subprogram that calculates the Square of a number this way is shown in 
Pseudocode 7.10 where we find, side by side, an iterative version and a 
recursive version.
Pseudocode 7.10 Iterative and Recursive Square subprograms
See Pseudocode 6.10 for more details on computing the square of an integer.
To understand how subprogram Recursive Square works, we will trace its 
execution with a value of 3 for Num.  The trace takes the form of a 
subprogram invoking itself twice, as shown in Figure 7.45.
Figure 7.45 Trace of Recursive Square for Num = 3
Each call of the subprogram yields a contour, resembling levels on a map 
(stair-trace).  On entry to a subprogram, we step down a level, and then on 
exit we step up again.  It is important to have a “lowest” level, a stopping 
point (or a base case, such as Num = 1).  Otherwise, the algorithm would be 
“bottomless” or unending.  This lowest level is shown shaded on Figure 7.46.
See Section 7.3 for more details on returning control to the caller.
At this time, you do not need to know by which mechanism recursion is 
performed.  It is only necessary to know that after a recursive call, like after 
any subprogram call (and subsequent detour), the control must “return to 
the caller”.
Remember in Figure 7.15 that the first action done when Divide was invoked 
was:  “The point of return is noted.” In our case, this means that after each 
recursive call, the assignment of a new value to Square is performed, as 
shown in Figure 7.46.  In Chapter 8, we will take a look at the actual 
mechanism for recursive calls.
Functions
See Figure 5.42 for more details on Convert Seconds.
There is another kind of subprogram that is useful in some circumstances:  
the function.  When we first introduced subprograms in Chapter 5, we gave 
the example of a program, Convert Seconds for converting a number of 
seconds into days, hours, minutes and seconds.
Instead of using the Divide subprogram, which calculates both the quotient 
and remainder, we used the following two subprograms:
• Div, which found the quotient, and
• Mod, which found the remainder.
The Convert Seconds algorithm is shown in Pseudocode 7.11.
Pseudocode 7.11 The Convert Seconds program



Div and Mod are very much like the subprograms we have been using in this 
chapter, with one important difference.  In all our examples in this chapter, 
we have had subprogram invocations of the form:
Divide(Time, 60¥60¥24, Days, Seconds)
where the third argument, Days, is used to return the quotient.  In Convert 
Seconds we use Div very much like a mathematics function, like, for example
the trigonometric function Sine.  For this reason, the two subprograms Div 
and Mod are known a functions.
Note: Now that we know more about parameters, we have added brackets 
around them—something that was not done in Chapter 5.
The major difference between subprograms and functions is that functions, 
rather than having an argument to return the result of their computation, 
actually produce the value in a form which can be used directly.  This is very 
convenient in situations where the subprogram has only a single value to 
return.  This would obviously not work with the Divide subprogram since it 
returns two results, the quotient and the remainder.  The pseudocode for the 
Mod function is shown in Pseudocode 7.12.
Pseudocode 7.12 The Mod function
There are two things to notice here:
• The header finishes with the word “function”, and
• The last statement is Return Rem, which sends the result back to the 
caller.
There is an important distinction between a math function and a subprogram
function.  A math function only does one thing:  it produces a single value for
each invocation.  On the other hand, a subprogram function may have other 
effects as well as producing a value.  For example, a subprogram function 
could alter the value of a global variable or cause values to be written on an 
output device.  Such effects, called side effects, make a program that uses 
such functions much more difficult to understand and to change.  Therefore, 
side effects should always be avoided in programming.
Modules
Modules are “black boxes”.  Think of them as walls that surround a part of a 
program.  These walls enclose (or hide) data, and clearly separate the inside 
of the module from the outside.  Communication between the inside and the 
outside is totally under the control of the programmer.
The major use of modules is to provide a method for breaking up a large 
program into semi-independent pieces related by well-defined and simple 
interfaces.  The resulting modular structure is easier to 



document, analyze, modify and maintain.  It is also less prone to errors.
An important use of modules is for the creation of libraries of related 
subprograms.  In most systems, there are typical libraries of mathematical 
functions, input/output operations, and others.  Libraries can be viewed as 
building blocks to be used without knowing the details within them.  These 
library modules can also make use of other modules.
Generally, the information that is provided to the programmer is a brief 
description of what the module does, not how it does it.  Programmers do not
need to know how the library module performs its function in order to be 
able to use it.  We have come back full circle to the idea introduced in 
Chapters 2 and 3, that of structuring a solution with black boxes.

7.6 Review   Top Ten Things to Remember
1. Many of the concepts on program structureand block 

structurehave been introduced and used earlier.  At this stage, we are able to
understand them more fully, and to use them more creatively.  In particular, 
the concepts of sharing and hiding information are now extremely significant.

2. The hiding and sharing of datacan be achieved in a number of 
ways, that have been described and compared.  Local variables are useful for
hiding data, but global variables are dangerous for sharing.  Sharing is better
done by using parameters that are subprogram variables used to 
communicate data between the subprogram and either the main program or 
another subprogram.

3. During a subprogram invocation, we learned that a link is 
established between its call’s arguments and the subprogram’s parameters.  
This link is used to transmit data.  In previous chapters, when we considered 
sub-algorithms and subprograms, we concentrated on the flow of data and 
flow of control.  Now we need to be more complete by concentrating on the 
space occupied by the data and on how the data values are communicated 
from one space to another.  Data space diagrams are useful for illustrating 
these concerns.

4. Parameter passingbetween program and subprograms, or 
between subprograms, is done in two manners:  by value, one-way 
communication from calling program to invoked subprogram, and by 
reference, two-way communication.

5. Input parameter:  Passing a parameter by value copies the 
argument’s value into a subprogram parameter which appears as 



a local variable.  This value is used in the subprogram but is not changed by 
the subprogram.

6. Output parameter:  Passing a parameter by reference gives the 
subprogram access to the variable argument within the calling program.  The
value of this variable is changed by the subprogram and any previous value 
of the argument is destroyed.  This previous value of the argument may or 
may not be used by the subprogram, depending on the subprogram’s 
interface specification.

7. Three rules must be abided by when using variables in 
subprograms:
• Rule 1:  A (sub)program cannot access the local variables of any 
subprograms nested within it.
• Rule 2:  A (sub)program can access a variable that is local to itself.
• Rule 3:  If a variable does not appear in a subprogram, a search is 
made in the enclosing subprograms.  This search is continued until either the
variable is found, or the main program is reached.  If the variable is not 
found in any of these nests, then the variable is undefined and there is an 
error in the program.

8. A program’s blocks should always be loosely-coupled.  This 
means that its interactions are through parameters passed by reference, 
which implies a two-way communication.  Tightly-coupledblocks, interactions
through global and local variables, are quite complex and difficult to 
understand and maintain.

9. As an alternative control mechanism, recursionis often useful as 
it simplifies the programming effort.  Recursive subprograms were introduced
here, and will be used in the coming chapters.

10. The concept of module introduced yet another method of 
structuring a computer solution, that makes it possible to organize better the
various parts of a solution, and to help control coupling and cohesion.  
Modules can be used to create program libraries which make it possible to 
re-use programming components.

7.7 Glossary

Alias:  An identifier that refers to a variable that is also known by another 
name.  For example, the name of a parameter that is passed by reference.  
Since it refers to a variable in the calling program, it is an alias for that 
variable.
Argument:  A variable, expression or constant that is passed to a subprogram
in the invocation statement.



Base case:  The special case in a recursive subprogram that causes the 
recursion to terminate.
Binding:  The association of a name with a data value.
Block structure:  The hierarchical arrangement of the subprograms that 
comprise a program.
Cohesion:  The quality of a program that refers to the degree that all 
statements in the subprogram are concerned with the same objective.
Coupling:  The quality of a program that refers to the degree of 
interconnectedness of the constituent subprograms.
Function:  A subprogram that returns a single data value through the 
execution of a return statement.
Global data:  Data that are known throughout the program.
Julian date:  The ordinal of the given data in the year.
Loosely coupled:  A program in which all the subprograms have the minimum
number of interconnections.
Parameter:  A name that is local to a subprogram and is used to refer to the 
arguments in the subprogram’s invocation.
Pass by reference:  A method of parameter passing whereby the parameter 
is a local variable that is used to reference an argument in the invocation 
statement.
Pass by value:  A method of parameter passing whereby the parameter is a 
local variable that is used to access the value an argument in the invocation 
statement.
Recursion:  A situation in which a single subprogram is invoked more than 
once simultaneously; a subprogram that invokes itself.
Scope:  The part of a program where a particular identifier is associated with 
a particular item of data.
Side effect:  A change in the value of a variable that does not appear in the 
argument list of a subprogram invocation.
Strength:  Synonym for cohesion.
Subprogram:  A program that can be called by an invocation statement.

7.8 Problems
1. Divide Again
Create an algorithm to Divide using a subprogram which multiplies.  It may 
not be efficient, but it shows another way of doing something.
2. Trace Subs
Draw a data-flow diagram corresponding to the given interconnection of the 
subprograms below.  Trace this program for A = 0 and B = 1.  Draw a tree 
showing the calling of subprograms and indicate the order that the 
subprograms are called in.



Problem 2
3. Deep Nests
Given the nested blocks shown in the following diagram, indicate which 
blocks may be called by each block.  If a variable X is declared in E only, 
which blocks can access it? If a variable Y is declared in B, D and F, but is 
referenced in all of the modules, which variables (if any) are accessed or 
“seen” in each module?
Problem 3
Problems on Subprograms
4. Divide-And-Conquer
Use the previously defined Divide subprogram to:
a. convert pints to gallons, quarts and pints.
b. convert a decimal number to binary.
c. determine whether a year is a leap year.
d. convert 24-hour (military) time to civil time, indicating AM or PM.
5. Data of Easter
The algorithm to determine the data of Easter for any given year could 
involve a number of Div and Mod actions.  Create a subprogram to determine
the data of Easter according to the following algorithm for an input 
parameter Y, whose value is the year:
1. The “golden number”, G is (Y Mod 19) + 1.
2. The century number C is (Y Div 100) + 1.
3. The number of years X in which leap year was dropped, e.g., 1900, so 
as to keep in step with the sun is (3C Div 4) - 12
4. A correction Z to synchronize Easter with the moon’s orbit is (8C + 5) 
Div 25.
5. If D = (5Y Div 4) - X - 10 then March ((-D) Mod 7) is a Sunday—if (-D) 
Mod 7 = 0 then March 7 is a Sunday.
6. The “Epact” E specifies when a full moon occurs.  E = (11G + 20 + Z - 
X) Mod 30.  If E = 25 and G is greater than 11, or if E = 24 then E is 
increased by 1.
7. Easter is on the “first Sunday following the first full moon that occurs 
on or after March 21”.  The “calendar moon” used for finding Easter is 
defined as the Nth of March where N = 44 - E.  If N < 21 then set N to N + 
30.
8. To advance N to a Sunday, set N = N + 7 - ((D + N) Mod 7.
9. If N > 31 then the data of Easter is the (N - 31) April; otherwise, the 
date is N March.
6. Double All
What is output by the following program when it passes parameters by 
reference?
Problem 5



7. Dates
Use some of the previous algorithms (Leap, Days) and create:
a. Valid, an algorithm to test whether a given date Year, Month, Day is a 
valid date.
b. UnDate, an algorithm to convert a Julian date Julian,Year back into the 
Gregorian form Day, Month, Year.
c. DaysLived, an algorithm to determine the number of days a person has
lived, from the birth date to the present date.
d. Age, an algorithm to determine the (integer) age of a person.
e. WeekDate, an algorithm to determine the weekday a given date falls 
on, when given that the first day of the year falls on the Wth day (where W =
0 for Sunday, W = 1 for Monday, … and W = 6 for Saturday).
f. FirstDate, an algorithm to determine the weekday of New Year’s Day, 
given the year Y.  Use the fact that January 1, 1901 was a Tuesday (W = 2).  
Notice that a year of 365 days has exactly 52 weeks plus one day (i.e.  52 ¥ 
7 = 364).
8. Bind Dates
Create a binding table and contour diagram for any of the above Dates 
programs.
9. Range
Create an algorithm that reads in three values A, B, C and outputs the range 
R, which is the difference between the largest and smallest values.  This 
must be done using the following subprograms.  Provide the maximum hiding
of variables and subs possible.
The main program Range is to call a subprogram BigSmall3(I, J, K, L, S), 
which finds the largest L and smallest S of the parameters I, J, K.  This 
subprogram in turn calls two functions Big(P, Q, R) and Small(P, Q, R), each 
of which must call a subprogram Sort2(G, H), which takes G and H, and 
arranges them so that G is largest and H is smallest.
Problems on Passing Parameters
10. Divide Again
For the previously defined Divide subprogram and the following Main 
Program,
Problem 10
indicate the output of the following subprogram calls:
a.  Divide(D, C, B, A) e.  Divide(A, B – 2, C, D)
b.  Divide(A, B, A, B) f.  Divide(0, 1, 2, 3)
c.  Divide(A, A, B, B) g.  Divide(0, 1, B, B)
d.  Divide(B ¥ C, A – D, A, D)
11. Non-Divide Passing



Indicate the output of the following program if the input values are 1, 2, 3 in 
that order.
Problem 10
Indicate the output if the subprogram call (in the main program) were 
changed in each of the following ways:
(Note:  The input values are still 1,2,3 in that order.  Hint:  Use the contour 
diagram!)
a.  SUB(A, C)  (Answer:  6, 2, 5) d.  SUB(B, C)
b.  SUB(B, A)  (Answer:  8, 2, 3) e.  SUB(C, A)
c.  SUB(C, B)  (Answer:  7, 6, 3) f.  SUB(B, B)
Problems Involving Recursion
12. Recursive Power
Create a recursive subprogram to compute the Nth (positive) power of X.
13. Rem (or Mod)
Create a recursive program for Rem(A, B), which computes the remainder 
after A divides B (use successive subtractions).
14. Roll Your Own
Create a recursive program to compute something you are familiar with 
(another square, number conversion, craps rules).
Chapter 8   Data Structures
In this chapter, we consider the three basic data structures:  arrays, records, 
sets.  These data structures are created by grouping together smaller items 
to form larger items.  These three data structures in turn are used to create 
larger ones in the next chapter.
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8.1 Preview
In this chapter, we consider the following three basic data structures:
• Arrays(also called vectors, tables, matrices, n-dimensional lists, and 
subscripted variables) are homogeneousgroupings of items— all items are of 
the same kind.  The items within the arrays are accessed by way of indices.  
Tables, or arrays having two indices, are common, and will be considered 
here.  Arrays of three and more indices are less common, so they will be 
considered only briefly.
• Recordsare very important data structures.  They differ from arrays in 
that they are groupings of possibly heterogeneouselements (items of 
different kinds), whereas arrays are groupings of homogeneous elements.  
Also, values are not accessed by using indices, but by using names for the 
elements and a dot notation.
• Setsare homogeneous collections of distinct elements where the only 
relation between elements is that they are either in a set or not in it.  Sets 
are very useful in a number of applications.
Although arrays, records and sets are very useful in many applications, they 
all have one major restriction:  their size is static or set at some fixed 
maximum value.  Because of this, they cannot represent data whose detailed
structure or size are unknown when the program is written.  Data structures 
to represent such “unknown” data can be built during program execution 
through dynamic variables and pointers.  An example with linear lists of 
undefined length is used to show how these dynamic variables and pointers 
can be used.
The chapter also introduces the concept of an abstract data type, which is 
defined through its values and operations.  Other data structures important 
in computer science, like linear lists and trees, are also briefly introduced.

8.2 Arrays



What are Data Structures Anyway?
A data structure is a collection of related items organized in a certain 
fashion.  It enables us to consider all of the related items as one entity.  For 
example, a data structure could consist of apples, bananas, and oranges.  
Notice that these three items are related and organized alphabetically.  They 
could have been organized some other way.  The important thing to 
remember is that, because we are talking about a data structure, we can 
refer to the whole of these items, in our case, fruit.  Arrays
Data structures range from simple (like the fruit above) to very complex.  
They can be viewed in many ways, as shown below.
Figure 8.1 Parts of a chair
Let’s use a chair as an example.  A chair may be viewed physically as a 
collection of parts.  The simple chair drawn in Figure 8.1 has some legs, some
rungs, a seat and a back.  If we were manufacturing this chair, we would be 
also interested in knowing some more of their attributes, like how much does
each piece cost, how many pieces are available, and how big are the pieces. 
If you look at the list of attributes in Figure 8.1, you will notice that each 
attribute may be expressed differently from the next.  Price can be expressed
in dollars, quantity in numbers, reordered with a yes or a no, etc.
Let’s look at the attributes of one part:  the seat of the chair, in Figure 8.2.
Figure 8.2 Chairs inventory
We can make a list of attributes for each part of the chair, as in the lower 
part of Figure 8.2.  Here, the parts are listed vertically in the left column.  The
various attributes (Price, Quantity, etc.) are shown as columns.  Each part 
corresponds to a row.  This representation is called a table.  Each row of this 
table corresponding to a part is called a record.  Each column corresponding 
to an attribute is called a field.  In our example, Seat is a record and Quantity
is a field.
Now that you have seen what data structures are, you are ready to discover 
the different kinds of data structures used in computer science.  In this 
chapter, three basic types of data structures are introduced:  arrays, records,
and sets.
One-Dimensional Arrays
The first type of data structure introduced is an array.  An array is a 
homogeneouscollection of components—all the components are of the same 
kind.  The simplest arrays are linear:  they have only one dimension and are 
called vectors, n-tuples, single subscripted variables, or more simply, one-
dimensional arrays.  An example of such a one-dimensional array is shown in
Figure 8.3.
Figure 8.3 A one-dimensional Time array



This Time array could represent various times (using the 24-hour 
representation) at which a given event will happen over a week—a period of 
seven days.  An array is also sometimes called an indexed variable, for the 
following two reasons:

(i) Like a variable, it can contain values, and
(ii) To access a value, it is necessary to use an index.

You may have seen indices used in mathematics in the form of subscripts like
this:
Time1, Time2, Time3, Time4, Time5, Time6, Time7
In most programming languages the index is written within square brackets 
as:
Time[1], Time[2], Time[3], Time[4], Time[5], Time[6], Time[7]
In Figure 8.3, Time [1] refers to 12:24.  Generally, the names chosen for 
indices can be meaningful in the context of the application being 
programmed.  For example, we could replace Time [1] by Time[Monday].
Figure 8.4 illustrates another one-dimensional array, giving the body 
temperature of a patient, recorded every hour of the day.  Temperature[3] 
represents the temperature recorded at Hour 3.
Figure 8.4 Temperature vector
Figure 8.5 shows yet another example of a one-dimensional array; this one 
stores the grades of all the students in a class.  Grades[StudentID] 
represents the grade earned by the student whose ID is given by the value of
StudentID.
Figure 8.5 One-dimensional Grades array
The one-dimensional array Story in Figure 8.6 shows a long sequence of 
characters, one in each position from 1 to 10000.  Such long arrays of 
characters are often called strings.
Figure 8.6 Story vector
Performing Operations on One-Dimensional Arrays
We have seen that the individual components of an array can be selected by 
giving the name of the array followed by an index within square brackets:
ArrayName[IndexWanted]
For example, let’s say we had an array called Vector.  If Position is a variable, 
we can store a Value into the array Vector at the position indicated by the 
value of Position, using the following assignment:
Pseudocode 8.1 Storing a value in the Vector array
Similarly, we can retrieve a value from position Position of array Vector and 
assign it to variable Value by:
Pseudocode 8.2 Retrieving a value from the Vector array



We can use these indexed variables anywhere a simple variable can be used,
as in the following statement which computes a “running” average of 3 
adjacent vector components.
Set Average[Index] to (Vector[Index–1]+Vector[Index]+Vector[Index+1])/3
See Chapters 3 and 5 for a refresher on the operations possible for different 
data types.
An array component can be used in all the operations compatible with its 
type.  In other words, if an array component is of type Integer, then we can 
apply Integer operations to it.  Above and beyond these operations, we 
sometimes need operations on entire arrays.  An example of such an 
operation might be the input of an entire array.  This input can be done in 
several ways.  For example, let’s input seven times into the Time array from 
Figure 8.3.  One way to do this, is to use seven input statements, one for 
each index, as illustrated in Pseudocode 8.3.
Pseudocode 8.3 Inputting times into the Time array
A more efficient way to do this is to use a loop:
Pseudocode 8.4 Using a loop to input times into the Time array
Such input methods are not general, since we have to know how many 
entries we need to make ahead of time.
For more details on using a terminating value, see Chapter 6, Figures 6.4 and
6.5.
A more general method is shown below.  You do not need to know the 
number of entries ahead of time anymore.  We accomplish this by using a 
terminating value(or end-of-data marker), Sentinel, to detect the end of the 
entries.  Input Array assigns the input values to consecutive entries of the 
array, counting the number of entries made.  After the loop terminates, the 
final value of Count is assigned to the variable Size, so that now we know 
how many entries were made.
Pseudocode 8.5 Subprogram that inputs values into Vector array
See Chapter 7 to brush up on subprograms.
Clearly this method is more suited to large arrays or arrays whose size 
varies.  Once the data have been put into the array, the Size is known.  We 
can write the pseudocode to output this array with one a simple loop:
Pseudocode 8.6 Subprogram that outputs Vector array
In the rare case where this Size is not known, we would have to make use of 
a more complex loop with an end of data marker.
Using the Temperature array of Figure 8.4, let’s develop an algorithm to find 
the maximum temperature in the day by inspecting the values stored in the 
vector.  This algorithm must also indicate the 



position (Hour) of the first maximum value encountered (since there could be
several).  We want to develop the algorithm in a top-down manner so we first
define a rough outline.
Pseudocode 8.7 Algorithm to find maximum temperature
Note that TableSize should be equal to 24, the size of the array shown in 
Figure 8.4.
This outline can now be refined to the final solution.  The first value of the 
array is taken as the temporary Maximum.  One by one, the other values are 
compared to the Maximum and the first largest value encountered is kept.
Pseudocode 8.8 Final refined version of Pseudocode 8.7
Using One-Dimensional Arrays in Algorithms
The change making algorithm seen earlier in Chapters 4 and 7 can also be 
implemented very conveniently with an array.  The previous Make Change 
pseudocode from Chapter 4 involved many repetitions, with four similar 
loops.  It is repeated below and has been renamed Change Maker 1.
Pseudocode 8.9 Change Maker algorithm from Chapter 4
In Chapter 7, Figure 7.23, repetition was avoided by using the subprogram 
Divide.  Here, we will avoid the sequence of Repetitions in another way—with
an array (Pseudocode 8.10).
Pseudocode 8.10 Change Maker algorithm using Coins array
The new Change Maker 2 algorithm, outlined above, uses an array, Coins, 
which contains the denominations 25, 10, 5 and 1 in order.  As the for loop’s 
counter, Index, goes from 1 to 4, the variable Value is assigned the 
corresponding array values (first 25, then 10, 5, and 1), and the change 
corresponding to this Value is computed and output.
Actually the output of Change Maker 2 is not exactly the same as the output 
of Change Maker 1.  Change Maker 1 outputs quarters, dimes, nickels and 
pennies, while Change Maker 2 will output numerical values.  It is not difficult
to modify this second version so that its output is identical to the output of 
the first version.  We will let you do it.
Change Maker 2 is not only shorter than the previous versions of Change 
Maker, but most important, it can be modified more easily.  Extending it to 
apply to more denominations (such as 5 dollar bills, 10 dollar bills, 20 dollar 
bills, and even 2 dollar bills) requires only a slight change in the array values 
(as well as the size of the Coins array).  This algorithm could also be easily 
modified to make change in any foreign currency.
Another very common use of arrays is to store numerical data so that the 
values are available for repeated access.  For example, 



Figure 8.7 shows the computation of the variance of a set of numbers.
Figure 8.7 Variance   a first approach
The algorithm of Figure 8.7 requires the calculation of the mean of the 
numbers before it can compute their variance.  This forces it to make two 
“passes” over the array components, first to compute the mean and then to 
compute the variance.
There is another method for computing the variance.  This method, shown in 
Figure 8.8, does not need to compute the mean first, so only one pass over 
the array components is necessary.  It is always useful to approach a 
problem two different ways, as we have done here.  Doing so can help us 
choose more efficient solutions like the one in Figure 8.8.
Figure 8.8 Variance   another way
Note how short this second way is compared to Figure 8.7.
Two-Dimensional Arrays
Two-dimensional arraysare also called tables, or matrices.  A table may be 
viewed as a vector whose components are themselves vectors.  As is the 
case for the one-dimensional arrays, all values in a two-dimensional array 
must be of the same kind, since arrays are homogeneous.
Figure 8.9 shows a general two-dimensional array A with M rows and N 
columns but no values inside of them.  The value of a component is found by
using two indices, one to identify the row (first dimension) and the other to 
identify the column (second dimension).  The element A[I, J] is found by 
moving horizontally along row I and vertically down column J until the row 
and the column meet:  the value of the element is at the intersection.
Figure 8.9 A general array
Figure 8.10 shows a more specific table which, this time, contains actual 
Integer values.  This table represents the grades 4 different people received 
on 3 different quizzes.  The grade of person P on quiz Q is denoted Grades[P, 
Q].  In this example, person 2 made a grade of 80% on quiz 3.  This value of 
Grades[2, 3] is not to be confused with Grades[3, 2], which is the grade of 
person 3 on exam 2 (of 100%).  The order of the indices is important! This 
small table has only four rows and three columns, but could be expanded 
easily to accommodate more people or more quizzes.
Figure 8.10 A 4 ¥ 3 array for Grades
We could represent a variety of games, such as chess, checkers, or Tic-Tac-
Toe using tables.  A representation of Tic-Tac-Toe is shown on the left-hand 
side of Figure 8.11.  Each table entry (i.e.  Tic-Tac-



Toe[Row,Column]) can have one of three character values:  an ‘X’, an ‘O’ or a
blank ‘ ‘.
Figure 8.11 Two-dimensional tables
See Figure 3.1 in Chapter 3 for the Charge algorithm.
Another example of a two-dimensional array is the table of admission 
charges Charge Table for different combinations of Adults and Kids, also 
shown in Figure 8.11.  There are two important things to notice in this table.

(i) The column indices begin from 0, instead of 1; and
(ii) The row and column indices are more than simple reference 

points:  they represent the actual number of adults and kids necessary for 
the corresponding charge.
Notice that the values within each of our example arrays are all of the same 
kind:  the grades are all percentages, the game positions are all characters, 
the admission charges are all money values.
We saw in the last section how to scan values into a one-dimensional array.  
Let’s look at how it is done for a two-dimensional one.  The following 
algorithm shows how the items of Figure 8.12 can be scanned row by row.
Figure 8.12 Scanning an array row by row
The algorithm loops through the table elements in the order shown by the 
arrows:  Table[1, 1], Table[1, 2], Table[1, 3], Table[2, 1], and so on, row by 
row.  Let’s take a look at the trace of the indices of Row Traversal:
Figure 8.13 Trace of indices from Figure 8.12
We could just as easily have scanned the table column by column.  Try it out.
The following Input Matrix algorithm inputs a sequence of values into a 
matrix, row by row.
Pseudocode 8.11 The Input Matrix algorithm
A two-dimensional array can also simply be an extension of a one-
dimensional array.  For example, let’s extend the Temperature array of Figure
8.4 by keeping the hourly temperatures for a full week (or 7 days) instead of 
only for one day.  To do this, we need the equivalent of 7 vectors.  Figure 8.14
shows the resulting matrix.
Figure 8.14 A week of Temperatures
Performing Operations on Two-Dimensional Arrays
We have already seen in this section how to perform operations on one-
dimensional arrays.  Let’s look at what happens when you add a dimension 
to the array.
We will start with a calculation involving the Temperatures Table we recently 
constructed (see Figure 8.14).  We can use the data entered in this table to 
calculate a number of things.  For example, we could 



find the average temperature of a patient over the week, by summing all of 
the temperatures in the array and dividing this Sum by the total hours 
(7 ¥ 24), as shown in the following algorithm (Pseudocode 8.12).
Pseudocode 8.12 Algorithm to find the average of Temperatures
Using the Grades array of Figure 8.10, which gives the grades various 
students got on quizzes, we can also perform various kinds of operations.  
For example, it may be of interest to find the average grade for each quiz, 
the average grade of each student, the average weighted grade, or the 
average grades when the poorest values are dropped or “forgiven”.
Figure 8.15 Average of columns
Let’s start by developing an Average Quiz algorithm to compute the average 
grade for each quiz.  We will begin with a rough outline of the steps involved.
Pseudocode 8.13 Rough outline of Average Quiz Algorithm
This first draft consists of a For loop that selects a column, and for this 
column, accumulates the sum of all the grades before computing the column
average.
Let’s refine this algorithm by defining how the accumulation of the grades is 
done.
Pseudocode 8.14 Refined version of Average Quiz Algorithm
The resulting averages are shown at the bottom of Figure 8.15.
Going a little further, let’s compute the final grade from the existing grades 
by computing a weighted average.  Each quiz has a weight associated with 
it, as shown at the top of Figure 8.16 in the array Weights.  This means that 
the first grade must be multiplied by 0.2 (i.e.  it is worth 20% of the final 
mark), the second by 0.3, and the third by 0.5.  For instance, the final grade 
of the first person (first row) is computed as:
Final Grade = 0.2 ¥ 40 + 0.3 ¥ 60 + 0.5 ¥ 80 = 66
Figure 8.16 The weighted average of rows
We could develop in a top-down manner an algorithm to do this.  However, 
this is so similar to the previous algorithm that we can simply modify it 
slightly, as shown below (Pseudocode 8.15).  The resulting final grades are 
shown at the right of Figure 8.16.
Pseudocode 8.15 Weighted Averages Algorithm
Now that we have seen how to add and multiply parts of arrays, let’s look at 
how to add and multiply whole arrays together.  Adding arrays together is 
simple:  all you have to do is add each pair of corresponding values together 
and place the result in the corresponding spot.



For example, in Figure 8.17, we have added the 2 tables A[I,J] and B[I,J] 
together to produce C[I,J].  If you look at the shading, the 1 in position [1,1] is
added to the 5 in position [1,1] to produce a 6 in position [1,1].
Figure 8.17 Array addition
The algorithm to accomplish this addition is simple and is shown in 
Pseudocode 8.16.
Pseudocode 8.16 Algorithm for Array Addition
It is important to note that only arrays of the same dimensions can be added 
together.
Figure 8.18 Invalid array addition
Matrix Multiplication
Multiplying two arrays is a lot trickier.  Array multiplication is used in 
Mathematics, Science and Engineering.  A complex series of operations 
between the rows of one matrixand the columns of another is involved, as 
shown in Figure 8.19.  It resembles a dance between the items in a row of 
array A and the items in a column of array B.
Figure 8.19 Mechanism of matrix multiplication
Notice that here the two arrays need not be of the same dimensions.  The 
rule of dimensions is shown in Figure 8.20.
Note We have represented the elements differently here:  we use Ci j 
instead of our usual C[I,J].  Both conventions are correct.  Choose the one 
you prefer.
Each element Cij is determined by taking the ith row of matrix A and the jth 
column of matrix B, multiplying the corresponding elements, and summing 
these products.  Figure 8.20 illustrates further the computations involved in a
matrix multiplication.
Figure 8.20 Matrix multiplication
An algorithm for matrix multiplication is defined below (Pseudocode 8.17).  
Note how simple it is, even though it involves a great many computations.
Pseudocode 8.17 Algorithm for Matrix Multiplication
N-Dimensional Arrays
Let’s complicate things a bit and add one more dimension to our tables to 
make them three-dimensional arrays.  This way, we can store even more 
information in them.  Take, for example, our patient temperatures from 
Figure 8.14.  So far, we can only store the temperatures for a patient hour by
hour over one week.  It would certainly be more useful for a doctor to have a 
record of the temperatures taken for a whole month.  Now, we know that the 
number of days in a month can go from 28 to 31.  To simplify 



matters, let’s assume that our month is 28 days long:  exactly 4 weeks.
So, to store temperatures for a full “month”, we need 4 of the tables shown 
in Figure 8.14.  But we do not want to deal with 4 arrays—we want all of the 
temperatures in one spot:  in one array.  To accomplish this, we need to build 
a three-dimensional array by putting the 4 tables together layer by layer (we 
will have 4 layers), forming a cube.  Figure 8.21 shows this cube.
Figure 8.21 Three-dimensional temperature array
We can also extend our previous weekly temperature average computation 
to a monthly one.  If you take a look at our previous weekly average 
pseudocode, you will see that all we have to do is extend the weekly 
temperature summations.  We do this below by adding a loop for the weeks, 
adjusting the indices in Temperatures to 3, and changing the averaging 
divisor to reflect that we have 4 times more hours.
Pseudocode 8.18 Algorithm for Monthly Average
We could go even further and extend this example to a fourth dimension:  we
could keep the temperatures over a year (for long care patients).  The four-
dimensional array will be equivalent to 13 three-dimensional arrays like the 
one in Figure 8.21 (Why 13? Remember our “months” are “lunar”!).  An 
individual temperature in that array would be denoted by 
Temperatures[Hour, Day, Week, Month].
8.3 Records
What are Records?
Remember that an array is a homogeneouscollection of components; all 
components of the same kind.  A record is a heterogeneouscollection of 
components.  In other words, the components may be of different kinds.  A 
record is a compound data structure consisting of a number of components, 
usually called fields.  Think of a record as a template that outlines each of 
the record’s fields.
Figure 8.22 An empty and a full Date record
Two different Date records are shown in Figure 8.22.  The one on the left is 
empty and the one on the right is full.  Take a look at the empty one; it is a 
template or a skeleton.  We can see that Date is a collection of 3 fields:  Year,
Month, and Day.  On the right, MoonDate represents a specific date:  the day 
humans first set foot on the moon.  You will note that there are now values 
inside of the fields.
Figure 8.23 The Ace of Spades card record
The Card record of Figure 8.23 describes a playing card in terms of its two 
main features, Suit and Rank.  This particular diagram shows 



the specific Ace of Spades record.  Since card decks usually have 52 cards 
with four possible suits and 13 possible ranks, we could use the Card record 
to describe any of the 52 cards.
Figure 8.24 A Complex Number record
The Complex Number record of Figure 8.24, often used in engineering and 
mathematics, consists of two parts, a Real Part and an Imaginary Part.
Figure 8.25 A Part record
The Part record of Figure 8.25 describes a typical part (like the parts of a 
chair we introduced earlier).  It consists of an identification Number, a Price, 
a Quantity, and a Size, which is itself a record with two components (Length 
and Diameter).  We could say that Size is a subrecord of Part.
Figure 8.26 Joe King’s student record
The Student record of Figure 8.26 consists of an Identification number, a Sex 
(Male or Female), a Grade average, and a Status (Full time or Part time).  A 
student also has a Birth Date, which is a subrecord within this record.  This 
subrecord is described by the Date record, defined earlier.
The Book record of Figure 8.27 shows a more complex record.  It comprises a
number (ISBN), a Title (character string), a Price (dollars), an Author and a 
Date received.  The author is described by another subrecord consisting of 
one field called Name, and another subrecord called Address.  More of such 
complex records will be considered later.
Figure 8.27 Practical Programming Book record
Records can be used to describe most anything from cars to clothes, catalog 
items, employees, loans, reservations, customers, bank accounts, schedules,
patients, and many others.
Accessing Record Components   the Dot Notation
Record components are accessed by using a special dot notation.  For 
instance, the value in the Title component of the Book record in Figure 8.27 
is indicated by the following:
Pseudocode 8.19 Accessing a record’s components
For example, consider the two students named Joe and X described in Figure 
8.28.  Joe’s identification number is written Joe.ID and.  X’s is written X.ID.  
Record components are treated as any other variables, and can be assigned, 
input, output, or compared, as shown in Pseudocode 8.20.
Pseudocode 8.20 Operations on a record’s components
Figure 8.28 Accessing nested records
The fields of nested records (or subrecords), such as Birth Date, are also 
easily accessed by extending the dot notation.  For example, 



since Joe.Birth Date is a record, the dot notation can be used to access its 
components, as in:
Pseudocode 8.21 Accessing components of records within records
We could have made our student record more detailed and used deeper 
nests of subrecords.  The deeper the components, the longer the dot 
notations.  For example, we could have had:
Pseudocode 8.22 Longer dot notations; deeper components
An entire subrecord like Joe.Birth Date can be assigned values in one shot, 
without assigning values to each component individually, by a simple 
statement as shown in Figure 8.29.
Figure 8.29 Assigning values to entire subrecords
Figure 8.30 shows how one of the components of a chair can be described for
inventory purposes.
Figure 8.30 Accessing nested records
Notice that the Size of a Rung has two parts, a Length and a Diameter, and 
that the Length itself is described by a number of Feet, a number of Inches 
and a number of Eighths of an inch.  Accessing a deeply nested record 
component proceeds naturally top-down from the trunk of the main record.  
For example the Rung supplier’s phone number Area Code is denoted:
Rung.Phono.Area Code
Similarly the statement:
Set Rung.Size.Length.Eighths to 5
indicates that the part of the Rung’s length expressed in eighths of an inch is
assigned the value 5.  In this way, the concept of top-down applies to items 
as well as actions.
Combining Arrays and Records
Arrays and records can be combined in various ways and may be nested 
within one another.  We will show here some of the more common 
combinations.
Figure 8.31 Record of arrays
• Records of arrays are simply records whose components are arrays.  
For example, Figure 8.31 shows a Pupil’s record consisting of two arrays.  The
first one contains all the grades received on Projects, and the second 
contains all grades received on quizzes.  The score of Pupil Joe on Quiz 2 is 
represented by using the mixed dot and bracket notation as

Joe.Quizzes[2]
or more clearly, if the second Quiz is the midterm, as
Joe.Quizzes[Midterm].

Figure 8.32 Array of records
• Arrays of records are arrays whose elements are records.  For example,
Figure 8.32 shows an array of workers where the number 



of Hours worked and an hourly Rate of pay is specified for each Worker.  The 
time worked by the third person can be selected by the notation:
Worker[3].Hours
More complex structures can be created from the above two structures.  For 
example, the array of workers could actually be a component of a 
Department record.  In such a case, the hours worked by the third person in 
the research department are denoted by:
Research.Worker[3].Hours
We can keep on combining records and arrays, nesting them deeper and 
deeper within each other.  We can even construct arrays of arrays which are 
convenient for structuring data.  A two-dimensional array is in fact a one-
dimensional array whose components are themselves one-dimensional 
arrays.  Similarly, a three-dimensional array is a one-dimensional array 
whose components are themselves two-dimensional arrays, and so on.

8.4 Sets
What are Sets?
In mathematics, sets are collections of items where each item appears only 
once.  The order of the items is immaterial and the size of the sets may be 
infinite.  In computer science, we use a similar definition except for the fact 
that set sizes cannot be infinite.  They also are implementation dependent.  
Sets are usually represented using braces as in {2, 4, 6, 8}, or { } for the 
empty set.
Operations on sets are the usual mathematical set operations:  membership, 
union, intersection, and difference.
• Set membership is denoted by the symbol Œ as in:

1 Œ {1, 2, 3, 4, 5} and 1 œ {2, 4, 6, 8}
• The union of two sets A and B is the set comprising all elements in A 
and B, and is denoted by the symbol » as in A » B, and is illustrated by Figure
8.33.
Figure 8.33 Set union
• The intersection of two sets A and B is the set comprising the elements
common to both A and B, is denoted by the symbol « as in A « B, and is 
illustrated by Figure 8.34.
Figure 8.34 Sets intersection
• The difference of two sets A and B is the set comprising the elements 
of A that are not in B, is denoted by the symbol “–” as in A - B, and is 
illustrated by Figure 8.35.
Figure 8.35 Difference of sets
Let’s look at a few examples to illustrate the various set operations.  First, 
let’s define some sets:



Digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Evens = {0, 2, 4, 6, 8}
Primes = {2, 3, 5, 7}
Lucky = {7}
X = {1, 8}
Y = {1, 5, 9}
PowersOfTwo = {0, 2, 4, 8}
We then have the following identities:
X » Evens = {0, 1, 2, 4, 6, 8}
Primes « Evens = {2}
Lucky « X = {}
Y – X = {5, 9}
1 œ Evens » Primes
Digits = Evens » Primes » Lucky » X » Y
A Difficult Sets Example (optional)
As an example of the use of sets, we will consider a simplified version of the 
problem of constructing a school timetable.  We can suppose these two 
specifications of the problem:
• The students are identified by student numbers in the range 1 to 
Number of Students.
• The courses from which the students choose are numbered from 1 to 
Number of Courses.
During registration, each student makes a selection of courses.  The problem
is to construct a timetable where certain courses are scheduled concurrently 
but will not pose a conflict for any of the students.  For instance, if Student 1 
has chosen courses 1 and 2, these cannot be scheduled at the same time.
In practice, the construction of a timetable is a most difficult problem since 
the number of potential timetables is very large and a choice must be made 
under many constraints and with many factors to be considered, like faculty 
availability.  In this example, we will simplify the problem drastically, and will 
not attempt a realistic solution of the timetable problem.
The data obtained from registration, Registration, can be represented as a 
vector of sets of courses.  This vector will have as many elements as the 
Number of Students.  To help understand this, Figure 8.36 shows a 
Registration array that might come from five students choosing from six 
courses.
Figure 8.36 Sample of Registration data for timetable problem
By inspecting these data, we can try to find courses that can be offered 
concurrently.  For instance, it is obvious that courses 2, 5 and 6 cannot be 
given at the same time as course 1 because of students 1 and 4.  However, 
there is no conflict between course 1 and courses 3 



and 4, so course 1 could be given at the same time as courses 3 and 4.  But 
courses 3 and 4 are in conflict because of student 3 and cannot be given 
together, so it appears that course 1 can be given at the same time as either
course 3 or course 4.
We could continue and determine our timetable this way.  However, if we 
want to be able to solve timetable problems that are realistic, we must find a
systematic way of doing this.  You must be aware that even in a small college
the number of students and the number of courses are much larger than our 
example, and would not be as easy to manage.
Based on our first try above, our solution will have the following structure:
Pseudocode 8.23 Structure of timetable solution
The first part of the solution will be easy to define, as we want to input data 
and end up with one set of courses per student as seen in Figure 8.36.
From this registration data, we want to Find the Conflicting Courses.  To do 
that, we construct a new vector of sets of courses, Conflicts, with one 
element for each course.  The ith element of Conflicts is the set of courses 
with which course i conflicts.  A course conflicts with course i because one 
student (or more) has selected both of the courses.  Conflicts[i] is then the 
set of courses that cannot be scheduled concurrently with course i.  Thus, 
returning to our example data in Figure 8.36, courses 1, 2, 5 and 6 all conflict
and cannot be run concurrently—because Student 1 has chosen courses 1 
and 2, and Student 4 has chosen courses 1, 5 and 6.  Pseudocode 8.24 
constructs the Conflicts vector.
Pseudocode 8.24 Algorithm to construct Conflicts vector
Figure 8.37 Trace of Conflicts vector
Based on the sample data in the Registration vector, Figure 8.37 shows a 
trace of how the Conflicts array is built, using the Find Conflicting Courses 
algorithm.  The final Conflicts array is found in the last column at the right of 
the figure.  This shows, for example, that courses 2, 4 and 6 all conflict with 
course 3 and cannot be run concurrently—because Student 2 has chosen 
courses 2 and 3, Student 3 has chosen courses 2, 3 and 4, and Student 5 has
chosen courses 3 and 6.
Note In Figure 8.37, course 3 conflicts with course 3 - this is an unwanted 
but harmless by-product of our Find Conflicting Courses algorithm.  Also, the 
shaded elements represent those that have changed during the loop.
Now that we have a list of the conflicting courses, we must construct a 
timetable.  The timetable will be a vector, Schedule, with sets of 



non-conflicting courses as its elements, indexed by the session number.  
These elements are constructed one by one by picking from the complete set
of courses a suitable non-conflicting subset of courses, Session.  We then 
subtract the suitable course subset from the set of Unscheduled courses until
Unscheduled is empty.  Unscheduled is initialized to the set of all courses at 
the beginning.
Pseudocode 8.25 Algorithm to build Sets of Non-Conflicting Courses
How do we choose Next Possible Session? We start by selecting any course 
from Unscheduled and putting it into Trial Set.  We then add to Trial Set other
courses from Unscheduled that do not conflict with any of the courses 
already in Trial Set until no more courses can be added.  The condition for a 
course to be added to Trial Set is that the intersection of the conflict set of 
the candidate course and Trial Set must be empty.  We can therefore expand 
Find Next Possible Session as shown in Pseudocode 8.26.
Pseudocode 8.26 Expanded Find Next Possible Session
The first three lines of this algorithm find the lowest numbered course in 
Unscheduled and set Course Num to that value.  Let’s put these two pieces 
of pseudocode together (Figure 8.38).
Figure 8.38 Combined Algorithms from Pseudocode 8.25 and 8.26
We will now trace the Build Sets of Non-conflicting Courses algorithm with 
the same data we have used so far for the first three sessions.
Figure 8.39 Trace of Session 1 generation
Figure 8.40 Trace of Session 2 generation
Figure 8.41 Trace of Session 3 generation
Figures 8.39, 8.40 and 8.41 trace the execution of the algorithm for each of 
the three sessions.  Notice that it only took us 3 sessions to schedule the 6 
courses.  Let’s summarize the course lists for each session:
• Session 1 Courses 1 and 3
• Session 2 Courses 2 and 5
• Session 3 Courses 4 and 6
Obviously, each session has 2 courses taught at the same time.  However, 
please note that this algorithm for selecting “suitable” sessions will not 
generate an optimal Schedule.  In unfortunate circumstances, the number of 
sessions in the Schedule may be as large as the number of courses, even if 
simultaneous scheduling were feasible.
If you have been able to follow this entire example, congratulations! This was
a difficult example, and you will find that algorithms that need to use sets 
are usually complicated.  Check your understanding 



by using the algorithm to generate a timetable from the following 
registration data:
Student Set of Chosen Courses
1 {1, 4, 6}
2 {2,4}
3 {3, 4, 5}
4 {1, 4, 5}
5 {2, 5}

8.5 Data Structure Building Tools
Dynamic Variables
The problem with the data structures we’ve seen so far, is that their 
structure is static.  That is, their size and layout are fixed when the program 
is written.  This is a problem if we want to be able to use a broad range of 
data.  Dynamic variables can solve this problem.  Dynamic variable
Dynamic variables are variables of a special nature.  Like regular variables, 
they are used to store data, but unlike regular variables, their number is not 
known during algorithm development.  They are instead created and used 
during the execution of the algorithm when needed.  The advantage of using 
dynamic variables is that we do not have to guess at the number needed 
beforehand:  we will use exactly what is needed and nothing more.
Pointers
Since we do not know how many dynamic variables we will need (that is the 
whole point of having dynamic variables), we cannot give them names, like 
we did with other variables.  To represent and name dynamic variables, we 
need another kind of variable:  pointervariables.  Pointers can store only one 
kind of value:  the location of a dynamic variable.  When you point your 
finger at something, you answer the question “Where?”.  Same thing with 
pointers:  they answer “Where is the dynamic variable?”.
Let’s take a look at how pointers and dynamic variables are used together.  
In Figure 8.42, we use them together to create a list whose length is not 
known until the program is run.
Figure 8.42 Pointers in a dynamic list
You will notice that this list contains 4 element records.  On top, we have a 
pointer called List1 whose function is to tell us “Where?” the list begins.  The 
end of our list is marked with a pointer that has a special value, known as 
NIL, that points to nothing.  A NIL pointer is shown as a slashed box.  Each of 
the element records in Figure 8.42 contains 2 parts, as shown in Figure 8.43.
Figure 8.43 Two parts of an element record



An element record in general contains a minimum of two fields (like ours 
above):
• one for the element information, and
• one for the pointer to the next element record.
It is not unusual that a record contains more fields than that:  it could have, 
say, three more information fields and a couple of other pointers.  Data 
structures built in this way are known as “linked lists” because the pointers 
act as links between the elements.  Here, we are going to keep it simple and 
say that we have one pointer per element record.  Our element record could 
look like the one in Figure 8.44.
Figure 8.44 A sample list element record
The element record in Figure 8.44 has three “information” fields:  Name, Age,
and Height.  Our last field is the pointer to the next element.  Using this 
sample element record, we could redraw Figure 8.42, now specifying the 
content of the “Item” parts (Figure 8.45).
Figure 8.45 A simple dynamic list of linked element records
We have made the arrows bend here so that you remember this:
Note: Pointers point to the whole element record (both the item and the 
pointer), not to one part in particular.  Usually, pointers are drawn as straight
lines.
Now that we have seen what element records can contain, let’s return to our 
original generic example of Figure 8.42.  There are certain algorithm 
instructions to remember when using dynamic lists.  Remember that the 
whole of the dynamic list is only created while the program is run, not when 
it is being written by the programmer.  So we have to give our algorithm 
instructions on how to create this list.
We will begin at the beginning:  a dynamic list begins with a pointer.  In our 
case, it is called List1.  This pointer variable already exists in the algorithm.  
However, it has no value:  it is empty.  If we wanted to create a list, we would
have to give List1 a value to define “Where?” the list begins.  The instruction 
to do this is:
Set List1 to New(Element)
There are two parts to this instruction:
• New(Element) uses a special function called New to:  (i) allocate the 
memory space for the first element record; and (ii) return a value:  the 
location of this new memory space.
• Set List1 to New(Element) takes this location value and puts it into the 
List1 variable.
Now that List1 is defined, we can use it to refer to either of the two parts of 
an element record (the item or the pointer).  To do so, we write List1 followed
by an arrow like this:  List1->.
List1->blabla can be read as blabla pointed to by List1.



• To refer to Item 1 (the first part of the first element record) in 
Figure 8.42, we would write:

List1->Information fields
• To refer to the pointer of the first record, we would write:

List1->Next
• Now to refer to Item 2, it gets a little trickier:

List1->Next->Information fields
• To refer to the pointer of the second element:

List1->Next->Next
In other words, we use the pointers to point the way towards the part we 
want.  We refer to the element records as follows:  the information in Item 1 
is called Information fields and pointers are called Next.  To remember how to
reference dynamic lists, think of everything written before the last -> as 
arrows pointing the direction of the path to follow.  The name after the last -
> is the name of the part wanted.  So when we are looking for Item 2, we 
need to write down the names of the pointers before it, followed by Item 2’s 
name, hence:
List1->Next->Information fields.
Let’s take a look at some pseudocode written to create the list of Figure 8.42.
Pseudocode 8.27 Algorithm to create the list from Figure 8.42
Everything should look relatively familiar here, in light of what we have just 
covered, except for the last statement:
Set List1->Next->Next->Next->Next to NIL
This makes sure the last pointer does not point to anything.  We should take 
a look at what each instruction accomplishes.
Figure 8.46 The step by step creation of a dynamic list
Obviously creating a list in this manner will soon be too difficult to follow as 
we will have long lists of pointers.  Worse than that, the length of such chains
of pointers must be specified when the program is created, thus falling back 
into the very problem we were trying to solve.
Luckily, it is possible to proceed in a more general manner when developing 
such an algorithm.  By using an extra pointer, Current, to refer to the list 
element being added, it is possible to rewrite our algorithm in the following 
manner without changing the order of the creation.
Pseudocode 8.28 Refined List Creation Algorithm using Current
We now have an algorithm that can create a list with 4 elements or with 
4,000 elements depending on the value we give to N.  However, we still have
not resolved the problem of creating a list without knowing its size (i.e.  we 
still need to input N in the above 



pseudocode).  That is left as an exercise for you to do (hint:  use pieces from 
the List Creation pseudocode).

8.6 Abstract Data Types
We know that, through programs, computers can model “real-world” 
processes like company payrolls (see Chapter 2), warehouse inventory 
control, and weather predictions.  However, “real-world” processes are too 
complicated to be exactly mimicked by a computer.  Using computers to 
model these “real-world” processes is only productive when the program 
accurately represents a problem.  Figure 8.47 shows how a “real-life” process
is transformed into a computer program.  Abstract data type
Remember the company payroll example? To calculate the payroll, we 
needed to know the number of hours each employee worked.  In the real 
world, an employee’s hours could be recorded by punching into a time clock, 
which records time in the form 8:33 a.m., or 4:59 p.m.  But getting the 
number of hours worked is not as simple as subtracting the two numbers, as 
if we had 2 Integers:  459 - 833.  We would get -374 hours? What does this 
mean?
For a computer to do this conversion, we would need an algorithm like the 
one called Time difference in Chapter 5, Figure 5.43.
If we converted 8:33 a.m.  into the total number of minutes elapsed since 
midnight, when the day started, we could then represent it as an Integer.  For
example, 8:33 a.m.  would become 8 ¥ 60 + 33 = 480 + 33 = 513 minutes.
Time is one of those “real-world” objects that is hard for a computer to 
manipulate.  Other “real-world” objects include names, dates, money, and 
meteorological data.  Luckily, objects like money are easily represented by 
Integers.  However, as we have seen above, Time is not easily represented 
by either Integers or Real Numbers.  We need a data type that more closely 
models time as it is used in the real world.
Figure 8.47 A program is a model of a “real-world” process
You should remember from Chapter 3 that a data type (like Integers, Real 
Numbers, and Characters) is made up of 2 parts:
• the value
• the operations possible on the value
For example, an Integer can have any whole number value and it can be 
added, subtracted, multiplied, divided to produce a quotient and remainder, 
and compared.
All programming languages (like Pascal, Modula-2, and so on) have a number
of predefined types.  We saw a number of them in Chapter 5, including 
Integers, Real Numbers, and Characters.  However, when 



we come across some “real-world” objects that cannot easily be modeled 
with these types, we need to define new types ourselves, called Abstract 
Data Types.
Abstract Data Types are not predefined:  they must be defined by the 
programmer when needed.  As the case with types in general, an Abstract 
Data Type must be defined in terms of its:
• possible value
• operations possible on the value.
For example, if we had to simulate a line of people waiting in line for tickets 
at a rock concert, we could do so quite easily by using an Abstract Data Type 
called a “queue”.  The rest of the chapter is devoted to introducing four 
Abstract Data Types:  strings, stacks, queues, and trees.
Strings
A character stringis a sequence of characters that is viewed as one single 
item.  A character is any element of the character set used on a particular 
computer.  Character sets include:
• letters (upper case and lower case)
• digits
• punctuation signs, and
• other special signs including spaces.
The treatment of character Strings varies greatly from one programming 
language to another.  Some programming languages do not include Strings, 
while others allow Strings of a fixed length, and still others allow all kinds of 
Strings of any variable length.  Some programming languages, such as 
Snobol4, are specialized languages for string processing.  Although general 
purpose programming languages treat Strings in a variety of ways, we can 
define here an Abstract Data Type String, which will illustrate the 
characteristics of character Strings.
Abstract data type Strings
Values
• Sequences of characters

Here are a few examples (we will enclose strings in double quotation 
marks).

“February 29, 1984”
“F”
“For a view of your results, press Enter”

Operations
Operation Example Explanation
• Input Input New Name ---
• Output Output “Please enter

quantity.” ---



• Assign Set Customer Name to New
name Assign one string to another

• Concatenate Set StringC to Concat(StringA, StringB) Append 
one string to another to create a new string.  If the value of StringA were 
“ABC” and StringB were “DEFG”, then this concatenation would produce 
“ABCDEFG” for StringC.
• Count Set Character Count to Length(StringC) Count the number of 
characters in the string.  Here Character Count would be 7.
• Search Set Pattern Position to Search(StringC, “CDE”) Search a string 
for a particular pattern.  If StringC had the value assigned in the Concatenate
example, this instruction would set the value of Pattern Position to 3.  Note 
that the way in which the position of a pattern in a string is defined varies 
from language to language, depending upon whether counting starts at 0 or 
1.  In this example, we started counting at 1.
• Insert Set StringD to Insert(StringC,

“XYZ”, 3) Insert one string into another after a given position.  This 
instruction would set the value of StringD to “ABCXYZDEFG”
• Extract Set StringE to

Substring(StringD, 2, 3)Extract a substring from a string.  This 
instruction would set the value of StringE to “BCY” (3 characters starting at 
position 2) and leave StringD unchanged.
• Delete Set StringF to

DeleteString(StringD, 2, 3) Delete a substring from a string.  This 
instruction would remove “CXY” (3 characters starting at position 2) from 
StringF, changing its value to “ABZDEFG”.
• Compare If Less(Month1, Month2) Compare two strings.  This 
comparison is done alphabetically, i.e.  “April” is less than “March”.
Stacks
Stacksare used to implement a number of things, in particular subprogram 
calls.  It is therefore quite natural to define an Abstract Data Type Stack that 
can be used in a number of applications.  A Stack is an ordered collection of 
items, where only one item is accessible:  the last one entered in the stack.
• A Stack is a homogeneous structure in which all the elements are of 
the same type, so the values in a Stack are all of a given type.  We can have 
Stacks of Integers, Stacks of Real Numbers, Stacks of Characters, Stacks of a 
given record type, and so on.

Figure 8.48 shows a small stack of Integers, as well as the operations 
of the Stack Abstract Data Type.
• The top item in a Stack is the last one that was entered into the Stack.



• The first item entered into the Stack is at the bottom of the Stack.
• The behavior of a Stack is often described as “LIFO”:  Last-In First-Out.
Figure 8.48 Stacks
Abstract data type Stacks
Values
• All of the values of the stack element type
Operations

• Create a stack.
• Push an item onto a stack:  the new stack top contains the 

pushed item.
• Pop an item from a stack:  the top stack item is deleted from the stack 
and returned as result.

• Check if a stack is empty.
• Check if a stack is full.
• Count the number of elements in a stack.

As we have already mentioned, stacks are very useful in computing.  Let’s 
use the Abstract Data Type we have just defined to detect palindromes.
Figure 8.49 Using Stacks to detect palindromes
We need to develop an algorithm able to detect whether a given String is a 
palindrome.  Palindromes are sequences of characters that read the same 
forwards as backwards (usually the spaces are not taken into account).  For 
example, the sequence “RADAR” is a palindrome, while “RADIO” is not.  The 
sentence “EVIL DID LIVE” is a palindrome.  Some other well known 
palindromes are “ABLE WAS I ERE I SAW ELBA”, and “A MAN A PLAN A CANAL 
PANAMA”.
Figure 8.49 shows how we can test a String for this property.  A string 
“STOPS” is input character by character into both Stacks S1 and S2.  This 
could be done by a sequence of pushes, as shown in Pseudocode 8.29.
Pseudocode 8.29 Sequence of Pushes onto a stack
The Pour operation transfers the contents of Stack S1 into Stack S3.  Notice 
that doing this reverses the order of the contents of the Stack:  the top item 
of S1 becomes the bottom item of S3.  This “reversing transfer” is done by 
the algorithm in Pseudocode 8.30.
Pseudocode 8.30 Reversing Stack S1 onto Stack S2
Finally the character sequence from Stack S2 can be compared to the 
reversed sequence in Stack S3 by the following pseudocode.
Pseudocode 8.31 Comparing Stack S3 to Stack S1
Figure 8.50 Big Adder



As another example, the Big Adder of Figure 8.50 shows how two Integers of 
any length can be added digit by digit.

1. The two numbers are input with most significant digits first, and 
put into stacks S1 and S2 with the least significant digits on top.  The two 
numbers are 1 and 5 in the given example.

2. The Adder begins with a Carry of 0 on a one-digit-Stack S3.
3. The digit in S3 is added to the sum of the top values of Stacks S1

and S2.
4. The sum digit is placed onto another stack S4, with the new carry

replacing the previous carry digit in S3.
5. The output stack S4 is finally output, with the most significant 

digits leading.
The algorithm for Big Adder is shown in Pseudocode 8.32.
Pseudocode 8.32 Algorithm for Big Adder
Queues
Queues occur much too often in everyday life.  Queues, as we are familiar 
with, are the lines of people usually waiting to be served one at a time (bank 
teller, bus line, supermarket cashier).  For example:  Queue
All our agents are busy helping other customers.  Please hold.  Your call will 
be answered in the order in which it was received.
Examples of Queues are not restricted to people, but also include vehicles 
stopped at an intersection, tasks waiting to be done, and so on.
Queues are used as a way of providing service according to its order in which
it is requested.  Queues are “first-come, first-served” or “First-In-First-Out” 
(FIFO) structures, in contrast to Stacks, which are Last-In-First-Out structures.
Queues are similar to stacks in some ways, but items are accessed from both
ends:  a front and a rear (unlike the single top access of stacks).  Many of the
Stack concepts extend to Queues.  In particular, Queues are homogeneous 
and contain only values of the same type:  queues of Integers, queues of 
vehicles, queues of people, etc.
Figure 8.51 A general queue
In general, a Queueconsists of a channel where items enter at one end 
(called the Rear) and ultimately exit at the other end (the Front) as shown in 
Figure 8.51.  There is no entry or exit in the middle of the queue.  The first 
item into a queue is the first one out:  this is why a queue is called a FIFO 
structure.
Abstract data type Queues
Values

• All of the values of the Queue element type



Operations
• Create a queue.
• Check if a queue is empty.
• Check if a queue is full.
• Count the elements in a queue.
• Enter an element into a queue.
• Remove an element from a queue.

Queues are used in a great number of computer science applications.  They 
are needed in all operating systems, to keep track of the various processes 
that are active at a given time, and to help allocate the computer resources 
in an optimal manner.  Queues are also used in all simulation applications.  
Simulation is an important field of computer science in which models of 
various systems of the physical world are developed.  These models help us 
to better understand the behavior of complex systems, without having to 
develop or alter the “real thing”.
Trees
So far, we have seen that Stacks and Queues are useful ways to represent 
items that are arranged in lines (like the line of people at the bank).  
However, let’s say you wanted to represent your family tree.  But a family 
tree contains lines with branches, so it cannot be represented by a stack or a
queue.  This is where Abstract Data Structures called Trees can be extremely 
useful.
Figure 8.52 A tree
A treeconsists of elements that are called nodes.  Each node is a record that 
contains a number of information fields and a number of pointers.  Each node
in a tree may have zero, one or several descendants which are connected to 
the nodes by branches (or edges) as shown in Figure 8.52.
In this figure, we have represented the same tree in two ways:  one starts at 
the bottom and the other starts at the top.  The nodes usually have values 
associated with them.  The root is the main node and is the ancestor of all 
others.  On the right, branches from a node lead downwards to children, or 
upwards to a parent.  The nodes that have no children (A, B, C, D in Figure 
8.52) are called leaf nodes, leaves, or terminal nodes.
Binary trees, where every node have at most two children nodes, are the 
most common in computing.  Figure 8.52 shows a binary tree used to 
represent an arithmetic expression, A – (B + C) ¥ D.  This tree is also called 
an expression tree.

8.7 Review   Top Ten Things to Remember



1. The data structures we have considered here make it possible to 
create large groupings of smaller items.  Arrays represent 
homogeneousgroups; records represent heterogeneousgroups.  Sets 
represent homogeneous groups of items, but offer different operations than 
arrays.

2. Arrays give a common name to the items they group, and make 
it possible to access the different components via indices, and a bracket 
notation.  One-dimensional arrays are quite common and easy to use.

3. Two-dimensional and multi-dimensional arraysare less common 
but sometimes better adapted to particular applications.

4. Records group heterogeneous items by their individual names, 
and make it possible to access their components by a dot notation.

5. Records may consist of other records or arrays, and in turn may 
be part of other records or arrays.  This combination of structures is very 
powerful and leads to very useful structures like arrays of records or records 
of arrays, and so on.

6. Mathematical operations may be performed on the elements of 
both records and arrays, provided the elements are numerical.  With two-
dimensional arraysor the same dimensions, matrix multiplication can be 
performed.

7. In computer science, sets are a form of the familiar and useful 
concept found in mathematics.  The elements of a set are homogeneous, like
in arrays, but the operations on sets are very different.  The set operations 
include Membership, Union, Intersection and Difference.

8. Dynamic variables are created during the execution of an 
algorithm and are referred to by pointers.  Linear lists, a series of records 
connected by pointers, were also briefly presented as an introduction to 
dynamic data structures.

9. Abstract Data Types are defined by the values they represent 
and the operations that can be applied to these values.  In this chapter, we 
defined the following three Abstract Data Types:
• Strings,:  a sequence of characters that is viewed as one single item,
• Stacks,:  an ordered collection of items, where the last item placed in a
stack is the first one out (LIFO), and
• Queues,:  an ordered collection of items, where the first item placed in 
a queue is the first one out (FIFO).

10. Trees were also briefly introduced as an example of a nonlinear 
Abstract Data Type.  Data structures are so important in 



computer science that, often, a whole course is devoted to them and their 
many implementations and uses.

8.8 Glossary

Abstract data type:  A data type, generally specified by the programmer, that
is defined purely in terms of its values and the operations that may be 
performed on them.
Dimension:  The number of dimensions of an array is the number of 
subscripts that are needed to reference a single element of the array.
Dynamic variable:  A variable that is created during execution of a program 
and is referenced through a pointer.
Field:  An individual component of a record.
Leaf node:  In a tree data structure, a node that is not linked to any other 
nodes.
Linked list:  A data structure where the elements are linked by pointers.
Matrix:  A two dimensional array that is used as a computer of a 
mathematical matrix.
N-dimensional list:  An n-dimensional array.
N-tuple:  A group of n numbers, a vector of n elements.
Node:  A location in a tree where branches connect.
Pointer:  A data item whose value is either the address of another data item 
or is the value NIL, in which case it is specifically not the address.
Queue:  A data structure from which items are removed in the order in which 
they were inserted into the structure.
Root node:  The first node of a tree data structure.
Set:  A group of data values, all of the same type, stored without ordering or 
duplicates.
Stacks:  A data structure in which data items are removed in the reverse 
order from which they were inserted.
String:  A sequence of characters that is viewed as a single data item.
Subscripted variable:  An array variable where the individual data items are 
referenced by subscripts.
Terminal node:  The leaf node of a tree data structure.
Tree:  A data structure that is similar to a linked list, except that each 
element, known as a “node”, has links, known as “branches”, to two or more 
elements instead of just one.  The first node in a tree is known as the “root 
node” and the nodes that are not linked to any other nodes are known as 
“leaf nodes” or “terminal nodes”.
Vector:  A one-dimensional array.



8.9 Problems
1. Mystery
What does the following algorithm do?
Problem 1
2. Side Bar Plot
Create an algorithm (top-down) to draw a bar plot as follows, given any 
number of bars N with values in array A for any given thickness of bars T, 
and space between bars S.  Here N = 4, T = 2, and S = 2.
3. Upright Bar Plot
Create an algorithm to draw an upright bar plot as shown, having M bars and
a maximum of N height.  Here M = 5 and N = 8.
More Problems:  Manipulations of Linear Lists
4. Reverse
Create an algorithm to reverse the values in an array A (with and without 
using recursion).
5. Normalize
Create an algorithm to convert an array of numbers (frequencies) into an 
array of probabilities, by summing all the values and then dividing each by 
this sum.
6. Weed
Create an algorithm to “weed out” or eliminate duplicate entries from an 
array V, creating a second array W.
7. K-Big
Create an algorithm to find the k-th largest value of an array A of N different 
values.
8. Intersection
Create an algorithm to compare the items of two sets (arrays each having no
repeated items) and to output those items which are common to both sets.
Create also the union, those items in either set or in both.
9. Hilo-Grade
Create an algorithm that computes an average of grades, and then indicates 
for each grade whether it is above, at, or below the average.
10. Median
Create some algorithms to find the median value of an array; this is the 
middle value (for an odd-sized array), or the average of the two mid values 
(for an even-sized array).
11. A La Mode
The mode M of an array A of N values is the value which occurs most often.  
Show two general algorithms to determine the mode.  Anticipate exceptional 
cases and handle them in any way you wish.
Problems On Tables
12. Scale Time



Given a table indicating the time T[I, J] to travel between points I and J in 
hours, create an algorithm to convert this time to minutes.
13. More-Charge
Recall the previous Charge algorithm of Chapter 3, when drawn as a table 
(where the charge C[Adult, Baby] is three dollars for each Adult, and two 
dollars for each Baby).  Create an algorithm to draw such a table for any 
given number of adults M and babies N.
14. Flip-N-Flop
Trace the algorithm given below when operating on the given table.  Then 
verbally indicate its behavior in general.
Problem 14
15. Transpose
Create an algorithm to transpose a rectangular array (i.e., to convert all 
values A[I, J] to A[J, I]).  This essentially “rotates” the array values about a 
diagonal.
16. MiniMax
Given an array of M rows and N columns, construct a flow block diagram that
finds the smallest entry in the row having the greatest sum.
17. Tic-Tac-Win
The game of Tic-tac-toe (or Xs and Os, or naughts and crosses) is played on a
table as shown in Figure 8.11.  A game is won if there are three identical 
symbols in a row, in a column, or along a diagonal.  Show two different 
algorithms to detect a win.
18. Normalize Frequencies
Two dice are rolled N times, with outcomes D1 and D2 noted and put into a 
table F[D1, D2] of frequencies of occurrence.  Create an algorithm to convert 
(normalize) this table of frequencies F into a table of probabilities P, by 
dividing each entry by N.  Then use this P table to find the probability of all 
sums S from 2 to 11.  For example, the probability of (S=11) is 
P[5,6] + P[6,5].
More Problems on Data Structures
19. University Record
Create a record of a university.  It is described by a name, enrollment, age, 
ZIP code, and phone number (having three parts:  Area code, Prefix, and 
Suffix).  The university is also classified as being Private or Non private.
Write a program to search an array of such universities and output the 
names of all those within a given telephone area code.
20. Play Record
Create a record describing a card game, such as Bridge or Poker, and 
indicate various actions which could be performed on such an item.
Still More Problems



21. Convolution
Trace the following algorithm when operating on the given arrays.
Problem 21
22. Bar Plot
Create an algorithm that draws an histogram (bar plot) where values are 
plotted in proportion to some values (given in an array).  Do this first with the
bars plotted horizontally, then again with the bars plotted vertically.
23. Weighted Forgiving Average
The Weighted Average computed for Figure 8.16 can be modified to forgive 
the lowest value.  To do that, it is necessary to find the lowest value and its 
position in the array, and then to subtract this minimum from the sum and to
modify the weighting which it applies to all of the other values.  For example,
if for some student the lowest grade were on the first project (having weight 
of 0.2), then the remaining projects (having a combined weight of 0.8) would 
be weighted by the new values 0.375 and 0.625 (computed from 0.3/0.8 and 
0.5/0.8).  Create the algorithm that will apply this forgiving method when 
computing a weighted average.
Chapter 9   Algorithms To Run With
The primary purpose of this chapter is to provide more extensive examples 
of how to use the data structures introduced in Chapter 8.  We also want to 
introduce you to a number of standard algorithms that are used frequently in
the course of programming applications.
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9.1 Preview
The first two tasks that are studied, sorting and searching, are applications of
the array data structures.  The objective of sorting is to rearrange the data 
into a specific sequence, e.g.  alphabetic or numeric order, while the 
objective of searching is information retrieval.
As is common with many tasks, there are several ways to perform sorting 
and searching.  For example, although there are only four basic ways to sort 
an array, there are dozens of variations of each of these ways.  Only a few of 
the variations are considered here.  Their individual advantages and 
disadvantages are discussed.
A particular area of interest in the study of algorithms is their analysis.  This 
is an investigation of the way in which their execution timeincreases with the
amount of data being worked with.  Algorithm analysis is presented and 
applied to the various algorithms that are introduced in this chapter.
As another example of the use of data structures, methods of implementing 
stacks, queues and trees are also introduced and discussed.  Some of these 
techniques use arrays as the underlying data structure, while others use 
dynamic variables and pointers.

9.2 Sorting
General Sorting Strategies
Sorting is an extremely common operation in computer applications.  Sorting
is the process of putting items in sequence according to some criterion (e.g.  
numerical order, or alphabetical order, etc.).  The sorted items can be small, 
like numbers, letters or character strings, or large records, like a library 
catalog where each record contains a lot of information about a book.  The 
items of data are sorted in increasing or decreasing order of a specific field 
called the sort key (numerical or alphabetical).  The small sorts that we have 
seen in 



Chapter 7, Sort2 and Sort3, worked with a fixed number of items.  Now, we 
want to be able to sort any number of items stored in an array.
The sorting process can operate according to three different strategies, as 
illustrated in Figures 9.1, 9.2 and 9.3.  We will assume that we want to sort 
numbers in decreasing order here.
Figure 9.1 Sort and copy
• Sort and copy(Figure 9.1)

This method sorts the items of array A and copies them in their proper 
order into another array, B.  This method may waste space, since it needs a 
second array as big as the original array to store the result.  The important 
thing to note is that the original array is preserved throughout the sorting 
process.
Figure 9.2 Sort and rank
• Sort and rank(Figure 9.2)

Here, using A once again, we generate a second array R which contains
the rankof each sorted item.  The rank is expressed as the position of the 
specific item in the original array A.  For instance, in Figure 9.2, the highest 
value in A is 90.  So R1 refers to 90 by containing the position that 90 
occupied in the original array, A:  position 3.  As for sort and copy, this 
method preserves the original array but requires a second array.  That 
second array is probably not as big as the original one since its elements are 
only Integers instead of complete records.
Figure 9.3 Sort in place
• Sort in place(Figure 9.3)

This technique is also known as sort in situor sort and destroy, since it 
uses only one array A.  The final ordered values are placed back into A, thus 
destroying the original values in A.  On the up side, this sorting in place is 
economical of space, as it requires only one array.
The Four Methods of Sorting
For each of these three fundamental strategies (Figures 9.1 to 9.3), there are 
many different algorithms for sorting.  All of them fall into one of the 
following four categories:

1. Count Sort, where enumerating and comparing occur;
2. Swap Sort, where pairs of items are swapped;
3. Select Sort, where extreme values are selected;
4. Insert Sort, where moving and inserting of values occur.

We will illustrate these basic sorting methods with specific algorithms in the 
following sections.  In order to simplify the algorithms, we assume that we 
will sort positive, non equal integer values into decreasing order.  These 
algorithms can be modified very 



easily to sort character strings in alphabetical order.  To illustrate the 
workings of our algorithms, we will use the first nine decimal digits as the 
sequence of numbers to be sorted.  The original sequence is as follows:
8, 5, 4, 9, 1, 7, 6, 3, 2
You might have noticed that these values are sorted in alphabetic order 
(eight, five, four, nine, etc.).  However, we wish to sort them into numerical 
order.
Count Sort
One of the simplest sorting methods is Count Sort although it tends to be 
forgotten.  This method finds the rank of all values in an array:  the largest 
value has a rank of 1, the smallest has a rank of N (if all values are different).
The top left part of Figure 9.4 shows the original array A before it is sorted.  
The rank of a value X is found by comparing it to all values in the array of N 
elements, and counting the number of values that are greater than or equal 
to that value X.  The largest value has only one value (itself) equal to it, and 
so has rank 1.  The second largest has two values greater than or equal to it, 
and so has rank 2.  The smallest has all N values greater than or equal to it, 
and so has rank N.
Figure 9.4 Count Sort
The first pass of the sort is shown in the top half of Figure 9.4.  It takes the 
first value, 8, and compares it to all of the values in the array (including 
itself).  It increments a counter each time it finds a value that is greater than 
or equal to 8.

1. In our case, it takes 8, compares it to the first value, 8, and puts 
the counter at 1.

2. Then, when it encounters the 9, the counter goes to 2.
This determines that the first value, 8, has a rank of two because only two 
values are larger or equal to it.  The bottom half of Figure 9.4 shows how the 
results of each pass are used to build the Rank array.  Nine passes are done 
in all, one for each value (N=9).
Now that we have seen how the sorting process operates, we can develop an
algorithm.  We will proceed top-down, first defining a rough outline for the 
Count Sort algorithm.
Pseudocode 9.1 Rough outline of Count Sort algorithm
We now refine this algorithm by giving the detail of the loop body.
Pseudocode 9.2 Refined version of Count Sort
• During each pass, a Value is selected.
• That Value is then compared to all the items in the array and a Count is
kept of the number of elements that are greater than or equal to the Value.



• The resulting Count is stored into the Rank array.
Notice that all of the values used in this example were different, producing 
all different ranks from 1 to N.  If some values were repeated, then some 
ranks would be repeated, and some ranks would not correspond to any 
values.  For example, if the value 8 were changed to 9, then there would be 
two items having rank 2 and none having rank 1.
Count Sort Analysis
Whenever you develop an algorithm, you should do two things:

(i) Test it to make sure it works, and
(ii) Analyze it to see how well it performs.

An algorithm’s performance can be measured in several ways.  It can be 
measured through its execution time or through the storage space needed 
for the data.  This algorithm analysis can become quite complex, and a 
thorough treatment of this subject is beyond our scope here.  However, a 
brief introduction to measuring algorithm performance, often called 
efficiency, is important.
The time it takes for an algorithm to run is called its execution time.  It is 
directly related to the number of operations it must perform.  For example, in
Count Sort, for an array of N values, the outer loop repeats N times and, for 
each of these N times, the inner loop also repeats N times.  Hence, the total 
number of repetitions is N ¥ N or N2.  In our example, there were 81 
repetitions because the array had 9 elements.  Since each repetition means 
one comparison, we can say that there were 81 comparisons.
You can see that doubling the size of the array (say from 9 to 18) does not 
simply double the number of comparisons, but quadruples it (from 81 to 
324).  This quadratic growth results in a very slow sorting algorithm, 
especially for large size arrays.
Some computers are better than others for doing comparisons.  In order to 
measure the algorithm’s performance in a manner which is independent 
from the computers that run them, we must rate algorithms by assigning 
them orders of complexity.  For example, an expression that gives us an 
estimate of the running time of the algorithm, we call time complexity.  For 
example, Count Sort requires about n2 comparisons for sorting an array of n 
items.  Such an algorithm is said to have a complexity of order n-squared, 
denoted O(n2)—read as “big-oh of n-squared”.  This big-O notation defines 
an upper bound for the complexity of the algorithms.  More formally the big-
O notation is defined as follows:
We say that g(n) is O(f(n)) if there exist two constants, C and k, such that:  |
g(n)| < C |f(n)| for all n > k.



If a sort has a complexity of O(n3) it is definitely slower than Count Sort.  The
best general sorts have a complexity of O(n log2 n), which is far better than 
O(n2).  If the sorts are very specific and limited in some way, then their 
computing times could be shorter, possibly linear (of order O(n) ) or even 
logarithmic (of order O(log n) ).
Space efficiencyis related to the amount of memory required.  In the Count 
Sort algorithm, a second array R is required for storing the ranks, so this 
Count Sort algorithm is not the most economical of space.  However, 
although the extra array has N elements, if the original array were an array 
of records, the extra array is likely to be much smaller since it only has to 
store Integers.  The space efficiency of the algorithm might be acceptable 
after all.  Of course, in our specific example, the rank array is as big as the 
original array (they both contain Integers), and the space efficiency might be
considered to be somewhat weak.
Swap Sort
This family of sorts comprises a great number of variations on a common 
theme.  We will introduce the Swap Sort theme on a specific and very well 
known example, the Bubble Sort.
Bubble Sort involves the comparison of adjacent values in the array being 
sorted, and swapping them if they are not in order.  The top half of Figure 9.5
shows the first pass over all the items of an original array A, where all pairs 
of adjacent items are compared.  After this pass we can say that the array is 
slightly more sorted.  Notice that the largest value (originally in position 4) 
has finished in the first position, which is where it should be.
The results after each pass are summarized in the bottom half of Figure 9.5.  
As we see, after pass 1, the largest value (which is 9) has bubbled up to its 
final position at the top of the array, and everything else has shifted past it.  
After pass 2, the second largest value (which is 8) has bubbled down to the 
second position.  This continues for each pass as shown by the shaded 
values.  This bubbling action of each value leads to the name of this sorting 
method, “Bubble Sort”.
Note that after pass 4 all the values are already sorted, but the algorithm 
continues and does all 8 passes.  Why? Because in a worst case scenario, the
algorithm actually requires N–1 passes for all N values to arrive at their final 
positions.  To check this out, try sorting some values that are already sorted 
in reverse order (like A[1] = 9, A[2] = 8, etc.).  Let’s develop the algorithm 
top-down as usual, starting with a first draft of the algorithm.
Pseudocode 9.3 First draft of our Bubble Sort algorithm



We need to refine now the bubbling action, where we must pass through all 
pairs of adjacent elements, comparing and swapping them as we go along.
Pseudocode 9.4 Second draft of our Bubble Sort algorithm
Figure 9.5 Bubble Sort
We reach the final and complete algorithm by specifying the details of the 
comparison.
Pseudocode 9.5 Final version of our Bubble Sort algorithm
The Swap sub-algorithm was introduced in Chapter 5, Figure 5.12.
Swap Sort Analysis
As the pseudocode shows, this Bubble Sort algorithm requires (N–1) passes 
(in our case, 8 of them).  Furthermore, each of these passes requires (N–1) 
comparisons, for a total of (N–1)¥(N–1) comparisons.  In our example of 
Figure 9.5, we have 9 elements to sort, so we need 64 comparisons.  This 
algorithm is already better than the Count Sort (which required 81 
comparisons), and could be improved still further.
There are many ways to improve this Bubble Sort.  Perhaps the easiest 
improvement comes from noticing that each pass can be one comparison 
shorter than the previous pass (because at the end of each pass one item 
has bubbled to its final position and should not be considered any more).  So 
on pass 1 we still make 8 comparisons, but on pass 2 we need make only 7 
comparisons since the 1 is already in its final position.  On pass 3, we need 
only 6 comparisons, and so on until the eighth pass where we need make 
only 1 comparison.  The total number of comparisons for our specific 
example is then
(8 + 7 + 6 + 5 + 4 + 3 + 2 + 1) = 36
which is less than half of the 81 comparisons of Count Sort.
We can generalize this result for an array of N values.  In this case, the 
number of comparisons necessary for an improved Bubble Sort is
or
Let’s compare the new and improved Bubble Sort to the first sort, Count Sort.
In Count Sort, N2 comparisons were needed.  Here, using the new and 
improved Bubble Sort, N(N-1)/2 comparisons are needed.
If we were to sort big arrays, where N is very large, we notice two things:
• Count Sort would need N2 comparisons
• Improved Bubble Sort would only need half as many comparisons:  
N2/2.  This is because when N is large, N(N-1) = N2.
So we can say that improved Bubble Sort is almost twice as fast as Count 
Sort, but both sorts have complexity O(N2).  If you do not know the above 
formula, its derivation is shown below.



The formula

for the sum of the first N-1 natural numbers is easy to derive by noting that 
the sum C can be expressed in two ways:

and

If we add both formulas, forming the sum term by term, we get the following:

Notice that each of these N–1 terms has a value of N, so that
.

The formula below is equivalent to the one above as an expression for the 
sum of the first N natural numbers:

Another way to prove this is to use induction:
1. Show that it holds for N = 1.
2. Suppose it holds for N, show that it also holds for N+1.
Select Sort
The Select Sort algorithm is based on the selection of extreme values, either 
the maximum value or the minimum value.  For example, the algorithm 
could start by finding the maximum value of the array to be sorted.  This 
value is then noted, put into another array and eliminated from the original 
array.  This process is repeated on the remaining original array:  the 
maximum of the remaining values is selected, recorded and eliminated.  So, 
as the sorted array is filled, piece by piece, the original one is emptied, piece
by piece.  This cycle continues until the N values in the array have been 
“recorded”.
Figure 9.6 Select Sort
The top half of Figure 9.6 shows the first pass over our array of positive 
integers.  The first maximum value is found to be 9, is output (or stored in 
another array), and its value is replaced by zero.
The bottom half of Figure 9.6 shows snapshots of the resulting array B after 
each pass.  Notice that the original array A is slowly destroyed in the process,
ultimately becoming an array of zeros.  Let’s develop our Select Sort 
algorithm using our usual top-down approach.  We loop N times, one pass for
each value in the array to be sorted.
Pseudocode 9.6 Rough draft of Select Sort algorithm
Let’s refine the various parts of the algorithm.  During each pass, the 
maximum value is found, stored in the resulting array and eliminated from 
the original array.
Pseudocode 9.7 Refined version of Select Sort algorithm



Let’s refine further the algorithm into its final form.  The Maximum is 
compared in turn to each value in the array and updated together with its 
position in the original array.
Pseudocode 9.8 Final form of Select Sort algorithm
The Select Sort method, as we have presented it, only works with positive 
integers, since eliminated values were replaced by zero, the smallest positive
integer.  If the data had included negative values, we would have to modify 
our algorithm to mark deleted items with the lowest possible negative value 
available.
Select Sort Analysis
The analysis of this sorting algorithm shows that there are N passes, and that
each pass examines the N elements of the table.  Consequently there are N2 
comparisons, which is similar to what we found for Count Sort.  This version 
of Select Sort uses a second array to store the result, which, as we have 
already seen, is not the most efficient use of space.
We can improve this algorithm in several ways:
• We could first take the initial value of Maximum to be the first value in 
the table, and thus reduce the number of comparisons to N–1.
• We could also combine the selection with swapping, as follows.  
Instead of storing the first Maximum found into a second array, we swap it 
with the first element of the table.  Then the Maximum of the rest of the 
array is found and is swapped with the second element of the table.  This 
selection and swapping continues until the entire array is sorted.  This Select 
Swap Sort involves only one array, the original array, which is considered 
during the sort to be split into two parts, a sorted part initially empty, and 
the rest of the array which is unsorted.  The sorted part will grow until it 
occupies the entire array.
Insert Sort
The fourth sorting method, Insert Sort, involves entering one item at a time 
from the original array A into a sorted array B by moving the existing items 
in B to make room for the inserted item.  It is rather like a card player sorting
a hand.  Initially, the sorted array B is empty, and the items are inserted into 
it one at a time.  B grows as the sort proceeds.  This algorithm has a form 
very similar to all the sorting algorithms we have seen and, for that reason, 
we leave it as an exercise.
9.3 More Complex Sorting
Improving Sorts
The four sorts we considered are the simplest forms of the four basic 
methods.  As we have already glimpsed, many variations and 



improvements are possible on each of these sorts.  Here we will consider 
some ways of improving the Bubble Sort algorithm.
The first improvement was already discussed when we noticed that each 
pass could be one shorter than the previous pass, because at the end of 
each pass one item had bubbled to its final position.  So, on Pass 1, we must 
make Size – 1 comparisons, on Pass 2 we must make Size – 2 comparisons 
and for a given Pass we only have to make Size – Pass comparisons.  This 
leads us to the algorithm in Pseudocode 9.9.
Pseudocode 9.9 Improvement to Bubble Sort algorithm
In the pseudocode describing the algorithm, this improvement is made by 
simply changing the inner loop terminal value from 1 to Pass as shown 
above.
In the presentation of the example of Figure 9.5, we have already noted that 
after Pass 4 the array was already completely sorted.  This shows that the 
number of passes the outer loop does are not always necessary.  Hence, this 
number, Size – 1 is a worst case maximum.  In fact, in many cases like in our 
example, the array is sorted before all Size – 1 passes are done.
In order to not be wasteful, we can try to detect when the array is fully 
sorted and stop the loop right away.  When a full pass is made without any 
swapping (like pass 4 in the example of Figure 9.5), this means that the array
is ordered.  To check this, we will use a logical variable, Finished, that will be 
set to True before each pass, and set to False whenever we actually do a 
swap.  This way, if during a pass we do not have a swap we can stop the 
process because the values are all in order.
Pseudocode 9.10 More efficient version of Bubble Sort algorithm
The above pseudocode implements this solution by changing slightly our 
original pseudocode.  With this new version, if the original array is already 
sorted, only one pass will be made!
You may have wondered why the inner loop of our Bubble Sort algorithm 
works backwards.  We must admit that this was done so that you could see 
the largest value bubbling up to the top of the list.  If the inner loop had 
worked forward, you would have seen the smallest value sink to the bottom. 
This would have been fine if the algorithm had been called “Sink Sort”.  
Either way, the result is the same.  Try it for yourself and see.  In the 
following examples, the inner loop works forward.
We can further improve our example of Bubble Sort in a major way by only 
comparing those values that are situated at a given distance apart instead of
comparing adjacent values.  The idea is that when two values that are a 
Distance apart are swapped, this possibly saves Distance individual swaps.



Such a method of sorting is called Shell Sort.  It starts by comparing values 
that are a distance Size/2 apart, then on the next cycle it compares values 
that are Size/4 apart, then values that are Size/8 apart, and so on.  It 
continues to reduce this distance until finally it compares adjacent values.  
This last pass resembles our original version of the Bubble Sort algorithm, 
but as the values have already been largely pre-sorted, the number of actual
swaps is low.
Figure 9.7 illustrates the Shell Sort method.  During the first pass we consider
the sequences (8, 1), (5, 7), (4, 6), (9, 3).  They are sorted and in the second 
pass we consider the sequences (8, 6, 2, 4, 1) and (7, 9, 5, 3).  The last pass 
considers the entire array.  In the figure, the comparisons that actually lead 
to a swap are marked with crossed arrows.  Pseudocode 8.11 illustrates this 
Shell Sort algorithm.
Pseudocode 9.11 The Shell Sort algorithm
Shell Sort uses a modified version of Bubble Sort called Distant Bubble Sort.  
This version compares subsets of values from the original array, values that 
are Distance apart.  To do that, we have to modify the part of our latest 
version of Bubble Sort shown below so that the comparisons are made 
between values Distance apart.
Pseudocode 9.12 Section of Bubble Sort algorithm to be changed
The inner For loop above must be changed to a While loop, and the 
comparison and swap must be changed so that elements Distance apart (not
adjacent anymore) are considered.  Another necessary modification was to 
make certain all sequences of spaced values were processed.  To do that, we 
had to repeat this inner loop Distance times, as the number of such 
sequences is equal to Distance.  These modifications, the addition of three 
nested loops, lead to a more complicated algorithm, Distant Bubble Sort, 
which makes it harder to follow.  The algorithm is shown in Pseudocode 9.13.
Figure 9.7 The Shell Sort process
Pseudocode 9.13 The Distant Bubble Sort algorithm
As the algorithm is more complex, the analysis of Shell Sort is far from trivial 
and is beyond our scope, so we will not do it here.  Suffice it to say that the 
complexity of Shell Sort is O(n1.2), which makes it better than the sorts we 
have seen so far, but still not quite as good as a number of other sorts that 
are more efficient, like Radix Sort, Heap Sort, and Quick Sort.  Depending on 
the data they process, these sorts have complexities going from O(n) to O(n 
log n).  They will not be presented here, but in the next section dealing with 
recursion, we will look at a similarly efficient sort called Merge Sort.
Recursive Sorts
The idea of recursive subprograms was introduced in Chapter 7.  A recursive 
subprogram is one that invokes itself.  Recursionis often a 



very useful technique to solve complex problems, and we will use it here for 
manipulating simple arrays.  Later in this chapter, it will be applied to more 
complex structures.
Let’s start with a simple example to illustrate the use of recursion with an 
array.  Summing the N numerical elements of a Table array (which was seen 
in our mean and variance examples of Chapter 8) can also be done by 
adding the last value Table[N] to the sum of the remaining (N–1) values.  
Using function Sum, this can be formally written as shown below:
Sum(Table, N) = Table[N] + Sum(Table, N - 1)
Function Sum is thus defined recursively (in terms of itself).  The base case, 
which causes the recursion to terminate, is obtained by realizing that the 
sum is zero for an array with no element.  The complete recursive summing 
up algorithm is shown in Pseudocode 9.14.
Pseudocode 9.14 The recursive Sum Up algorithm
As another example of the use of recursion with arrays, let’s look at how to 
reverse the elements of an array.  Among the many ways this reversal can be
done, we’ll choose to do it recursively by following two steps:

1 Swap the end points of the array, and
2 Apply the same Reverse algorithm to the remaining items, as 

shown in Figure 9.8.  The end points Left and Right correspond to the 
positions of the array element.  They continue to move inward, and the 
recursion stops when they meet (base case).
Figure 9.8 Recursive Reverse
The following pseudocode defines this recursive reversal.
Pseudocode 9.15 Recursive Reverse algorithm
Let’s take now a more complete example of the use of recursion with arrays. 
Another Swap Sort method for an array of N elements, Merge Sort, can be 
defined as a recursive algorithm by finding the array midpoint, and splitting 
the array into two arrays starting at indices First and Middle+1.  Then these 
two arrays are sorted (by calling this same Merge Sort algorithm!).  Once 
sorted, the two parts are finally merged together.
Pseudocode 9.16 The Merge Sort
Figure 9.9 illustrates the Merge Sort method applied to the set of data that 
we have been using in the other sorting algorithms.
The left half of the figure shows a succession of array splitting operations, 
corresponding to the recursive calls.  The right half of the figure shows the 
reconstruction of the array through invocations of the Merge subprogram.  
Although this Merge Sort mechanism might 



look complex, this sort is considerably faster than all the sorting methods 
considered thus far.
Figure 9.9 Merge Sort execution
The merging of the two sub-arrays is done simply with an index “sliding 
down” each array, with the maximum value of the two indexed values put 
into the array Result, as shown by the following pseudocode:
Pseudocode 9.17 The Merge Sub-algorithm
The method of Bisection described in Chapter 6 is similar in behavior to the 
Merge Sort algorithm.  In both methods the array is repeatedly split until we 
are left with one element sub-arrays.  The number of times we split a sub-
array is easily found if we note that the size of the sub-arrays is divided by 
two at each pass:
N N/2 N/4 N/8 ... N/2P
The last size is equal to 1 which gives us the following:
N/2P = 1 or 2P = N or p = log2 N
The number of passes, or the number of times the array is split, is thus log2 
N.  Merge Sort must also perform as many merges as there were splits, and 
each merge operation is O(N).  The performance of Merge Sort is therefore 
proportional to the product N¥log2N, and its time complexity is O(N log N).  
This complexity is considerably better than the O(N2) performance of all the 
previous sorting algorithms.
To obtain a better perspective on algorithm complexity, let’s look at the time 
complexities of the other recursive algorithms we have seen so far.  
Algorithms Sum up and Reverse both have a linear complexity of O(N), while 
algorithm Merge Sort has a larger time complexity of O(N log N).
9.4 Searching
Searching for a particular item in a table is a very common operation.  The 
item searched is sometimes called the search key or the target.  If the item 
occurs in the table, we would like to know its position.  If it is not in the table,
we would like to receive a special value that can be tested for, or some 
message to indicate its absence.  In some cases, we might even want to 
count the number of times the required item occurs in the table.
Figure 9.10 Searching for data items
The data structure of Figure 9.10 shows an array of 13 items.  We are to 
search the array for a given item Key, to count in the variable Count the 
number of times it is found and to record in the variable Position the index of 
the last item found with the given key.
Of the many ways to search, we will consider the two most important ways:
• Linear search; and



• Binary search.
Linear Searching
The simplest search, a linear search, involves one pass over the elements of 
an entire array.  The following pseudocode illustrates a simple sequential or 
linear search algorithm.
Pseudocode 9.18 The Linear Search algorithm
This algorithm examines each element in the array once, incrementing the 
counter of found items when it finds an array element equal to the Key.  
Position indicates the position of the last occurrence found.  If only the first 
occurrence is required, then the algorithm can be easily modified, replacing 
the For loop by a While loop as shown in Pseudocode 9.19.  If the item is not 
found, the value of Count remains zero.
In our example in Figure 9.10, if the key were 38, the following would be 
output.
Found 2 at position 5
If we require only the first occurrence, we can define a faster linear search 
algorithm, where the loop stops with Position indicating the first occurrence.  
Pseudocode 9.19 illustrates this change.
Pseudocode 9.19 The Fast Linear Search algorithm
With this faster search, the item might be found after only a few comparisons
or after inspecting almost all the elements in the table.  It depends on where 
the item is located.  On average, half of the elements of the table must be 
inspected before finding the desired element, which gives the Fast Linear 
Search a complexity of O(N).
Binary Searching
The previous two versions of the linear search were general, and made no 
assumptions about the data.  Sometimes the data values in the table are 
sorted, in increasing or decreasing order, and we can use this fact to speed 
up the search.
We used the Bisection method as early as Chapter 4 for our guessing game.
We can use the method of Bisection described in Chapter 6 to keep reducing 
the size of the part of the array to be searched until either we find the item, 
or we know that it is not present.  The binary searchalgorithm proceeds by 
halving the search range at each stage.  You may wish to create this Binary 
search algorithm on your own by modifying the Bisection algorithm 
described in Chapter 6 (Pseudocode 6.26).
The Binary search method is considerably faster than the previous linear 
search algorithms.  For example, searching an array of N items requires N/2 
comparisons, on average, using a fast linear search algorithm.  On the other 
hand, using a binary search method only 



requires log2N comparisons.  This means that, for an array of 1000 items, 
the fast linear search makes on the average 500 comparisons, whereas the 
binary search makes only 10 comparisons.  For arrays with very large sizes 
the contrast is even more significant; for a million items the linear search will
make 500 000 comparisons whereas the binary search makes only 20 
comparisons!
Of course, remember that nothing is free, and to achieve this speed, the 
binary search requires the initial array to be sorted.  If a sort has to be done 
before the binary search, this will add quite a number of additional 
comparisons.  But if the array, once sorted, is searched often, this binary 
search method is extremely efficient.
Pattern Matching
Sometimes, we need to do a different kind of searching called Pattern 
Matching.  Pattern Matching is necessary when we are searching a string of 
characters for a particular sequence of characters.  It can be accomplished 
by trying to match the particular pattern as we move it along the string, like 
in Figure 9.11.
Figure 9.11 Pattern matching
Let’s look at 2 different pattern matching algorithms called Search and 
Countand Find First Match.  The first pattern matching algorithm, Search and 
Count, is a rather simple and plodding algorithm.  It examines the entire 
string and counts the number of times the given pattern is found.  At each 
character in the string (except for the last characters for which the pattern 
would go beyond the string end) we check to see if the pattern fits.
This algorithm skeleton (Pseudocode 9.20) is extremely simple but we have 
yet to give the details of how the pattern comparison is done:  it is performed
one character at a time.  Each character of the pattern is compared to the 
corresponding character in the string; if a difference is discovered, the logical
indicator Found is set to false, as there is no match.  Note how the pattern is 
compared to parts of the string, 4 characters at a time.
Pseudocode 9.20 Skeleton of Search and Count algorithm
The expanded algorithm (Pseudocode 9.21) is not very efficient because it 
keeps comparing the characters of the pattern and the string even after 
setting Found to False.
Pseudocode 9.21 The Search and Count algorithm
Our second example of a pattern matching algorithm, Find First Match, will 
be faster, because it stops after finding the first match, and compares the 
characters of the pattern to the characters of the string only until it finds a 
mismatch.  Once a mismatch is found, the pattern is moved forward in the 
string for another try.  In order for this algorithm to stop when finding the 
first match, we will use a 



logical flag to indicate this condition as soon as it happens.  Pseudocode 9.22
defines this new pattern matching algorithm.
Pseudocode 9.22 The Find First Match algorithm
We still have to define the details of the actual pattern matching.  We are 
using a solution similar to our previous algorithm, but modifying it so that the
process stops as soon as a mismatch is detected.  To do that, we use another
logical indicator, Equal, to transmit the result of the pattern matching to the 
enclosing loop (Pseudocode 9.23).
Pseudocode 9.23 The Find First Match algorithm with detailed pattern 
matching
These two pattern matching algorithms are rather simple, but are not the 
most efficient pattern matching algorithms.  There are other much faster 
pattern matching algorithms, such as the Boyer-Moore algorithm, the Knuth-
Morris-Pratt algorithm and the Rabin-Karp algorithm.  These algorithms go 
beyond our scope and will not be presented here.
9.5 Implementing Abstract Data Types
In Chapter 8, we defined and used Abstract Data Types without giving any 
information about their implementation.  In order to run programs involving 
ADTs, we need to learn how to implement them.  The pattern matching 
algorithms we just saw could be part of the implementation of the String 
ADT, which will not be covered here.
Stacks
Stacks were introduced in Chapter 8 as an abstract data type with the 
following operations:
• Create a stack.
• Push an item onto a stack:  the new stack top contains the pushed 
item.
• Pop an item from a stack:  the result is the top stack item, which is 
deleted from the stack.
• Check if a stack is empty.
• Check if a stack is full.
• Count the number of elements in a stack.
Stacks can be implemented in many ways.  Here we will look at two 
implementations, one using arrays, and the other using pointers.
Implementing Stacks with Arrays
Figure 9.12 Four ways of implementing stacks as arrays
We can use arrays to implement stacks and this can be done in a number of 
different ways as shown in Figure 9.12, where the bottom and top of the 
stacks are shown as well as the indices of the array.  Notice how the indexing
changes from method to method.  Each of the following four methods is 
analogous to a physical situation



• Method a corresponds to books in a box; the first book put in goes to 
the bottom and the top changes as books are placed on the stack.
• Method b corresponds to stacks of plates in some restaurants, where 
the top plate is at the counter level, and the bottom plate is moved up by a 
spring whenever the top plate is taken.
• Method c corresponds to a number of drinking cups in a dispenser 
where the “top” cup is at the bottom, and as it is taken all the cups move 
down one.
• Method d corresponds to lighter than air balloons in a vertical tube, 
with the “bottom” balloon floating at the ceiling.
Selection of one of these stack implementations is made easy if you realize 
that Methods b and c require all the items in a stack to be moved when the 
top is pushed or popped.  Methods a and d are better candidates for our 
implementation; they do not involve such inefficient moving of the stack 
elements.  We might choose the first way, Method a, to implement our 
stacks, for it seems more “natural” in that the stack Top can be represented 
at the top of the page.  On the other hand, it would seem more natural to 
number the array elements from the bottom of the stack as Method d does.  
So we’ll choose Method d but we will reverse it in the diagram as shown in 
Figure 9.13.
Figure 9.13 One stack implementation   arrays
Our choice consists of an array with N elements, and a variable, Top, which 
indicates the stack top.  Because of the structure we chose, the 
implementation of the various stack operations is simple.  First, we create an 
empty stack as shown by the following pseudocode.
Pseudocode 9.24 Create Stack using arrays
Checking whether or not a stack is full is easily done by checking if the stack 
top is at the last element in the array.
Pseudocode 9.25 Stack Full function using arrays
To check if the stack is empty, we check to see if the stack Top is zero.
Pseudocode 9.26 Stack Empty function using arrays
We cannot push an item onto a full stack.  If the stack is not full, the Top of 
the stack moves up one position and the item is copied into the next 
position.
Pseudocode 9.27 Push on Stack algorithm using arrays
We cannot pop an item from an empty stack.  If the stack is not empty, the 
Top of the stack is copied into Item, and the Top is changed to point to the 
next item on the stack.
Pseudocode 9.28 Pop from Stack algorithm using arrays



As always, remember that there are many different ways of doing things and 
the implementation of stacks is no different.  The implementation we have 
just seen has the disadvantage that the stack size must be fixed once and for
all, when we choose the array to represent our stack.  Each time an 
application needs more space in its stack, we must redefine the array used in
the implementation.
Implementing Stacks with Pointers
To solve the problem of the fixed stack size we just mentioned, we can 
abandon the array implementation of stacks and use dynamic variables 
instead.  In fact, we can use the dynamic list representation that was 
introduced in Chapter 8 (Figure 8.42) to implement our stack abstract data 
type.  In that case, a stack will be represented as shown in Figure 9.14
The creation of a stack will be done easily by giving the stack pointer a NIL 
pointer value (pointer pointing nowhere), indicating that there are no 
elements in the stack.  Its algorithm is shown in Pseudocode 9.29.
Pseudocode 9.29 Algorithm for creating a stack
Notice that we are creating a stack in the opposite direction from the 
creation of a dynamic list in Chapter 8, (see Figure 8.46).
Checking whether a stack is empty is easy, as shown in Pseudocode 9.30.
Pseudocode 9.30 Stack Empty function using pointers
Checking whether a stack is full cannot be done as it was done with the array
implementation.  If a call to New, which creates a new element, fails, then we
will know all the memory has been used up.  This is equivalent to having a 
full stack.
Figure 9.14 A dynamic stack
The pointer variable Stack will always point to the top element of the stack.  
Our Push and Pop operations will be redefined by Pseudocode 9.31 and 9.32.
Pseudocode 9.31 Redefinition of Push on Stack algorithm
Before pushing a new element onto the stack, we need to create that 
element.  This is done by a call to New.  If this memory allocation is 
successful, we copy the information into the new element.  Remember we 
use New Top-> to refer to the dynamic variable indicated by pointer New Top.
We connect the new element to the top element of the stack through its Next
pointer field, and we change the value of Stack to indicate this new element 
as the top element.  Try to follow this algorithm as you add Item 5 to the 
stack of Figure 9.14.
Note: The dashed items in Figure 9.14 were added to help you visualize the 
“Push” operation.



Pseudocode 9.32 Redefinition of Pop from Stack algorithm
We cannot pop an item from an empty stack, so we must check for that 
condition.  If the stack is not empty, the top element of the stack is copied 
into Item, and Stack is changed to point to the next element on the stack, 
while the old top element is freed (Dispose is the inverse operation of New).  
Try to follow this algorithm as you delete Item 4 from the stack in Figure 
9.14.
Queues
Queues were introduced in Chapter 8 as an ADT with the following 
operations:
• Create a queue.
• Check if a queue is empty.
• Check if a queue is full.
• Count the elements in a queue.
• Enter an element into a queue.
• Remove an element from a queue.
As was the case with the stack, there are many ways of implementing 
queues.  We will show only two here:  one based on the use of an array, and 
another one based on dynamic elements.
Implementing Queues of Arrays
Figure 9.15 shows a queueimplementation using an array to store the queue 
elements.  Two variables Front and Rear indicate the array position of the 
front and rear elements.  Another variable Size indicates the number of 
elements in the queue
Figure 9.15 A queue implementation
As items are entered in the queue, the rear indicator advances, and as items 
are removed from the queue the front indicator also advances, leaving 
behind some “used” values.  So the queue “snakes” through the array.  As 
each indicator passes the last item of the array it continues to the first item, 
thus creating a “circular array”.
The algorithm to create a queue initially sets both Front and Rear variables to
the first index, and sets the Size of the queue to zero, as shown below.
Pseudocode 9.33 Create Queue algorithm using arrays
The functions to check whether the queue is empty or the queue is full are 
obvious, as illustrated by Pseudocode 9.34.
Pseudocode 9.34 Queue Empty and Queue Full using arrays
The function to count the elements in a queue is trivial since the Size 
variable tells us how many there are.
Pseudocode 9.35 Count Queue function using arrays
To implement the Enter and Remove operations, we need a small utility 
algorithm to advance the front and rear indicators in a cyclic manner in the 
array.  Advance index increases the index by l, but if 



the new index value goes beyond the end of the array, it is reset to one.  The
pseudocode for Enter Queue is self-explanatory and is shown below.
Pseudocode 9.36 Enter Queue algorithm using arrays
The pseudocode for Remove from Queue is also self-explanatory.
Pseudocode 9.37 Remove Queue algorithm using arrays
Implementing Queues with Pointers
The second queue implementation we will briefly present here is based on 
dynamic variables.  We will use a data structure based on a dynamic list, as 
shown on Figure 9.16
Figure 9.16 A dynamic queue
The variables Front and Rear are pointer variables and the elements in the 
queue are dynamic variables.  With this representation for queues, the 
creation operation is simple and just sets the Front and Rear pointers to NIL 
pointers.  The Enter Queue algorithm is defined by Pseudocode 9.38.  Look at
the dashed right-hand-side of Figure 9.16 to get an idea of the operations 
involved.
Pseudocode 9.38 Enter Queue algorithm using pointers
Follow this algorithm while adding Item 5 to the queue of Figure 9.16.
The Remove from Queue algorithm is very similar, and is shown below.
Pseudocode 9.39 Remover from Queue algorithm using pointers
Apply this algorithm to the queue in Figure 9.16.  The implementation of the 
other operations is easily done as it was for the stacks, and we leave it as an 
exercise.
Trees
We have seen an example of the nonlinear data structure Tree in Chapter 8.  
Although it is possible to represent trees using arrays, a more natural 
implementation of trees uses pointers.  Such a representation is illustrated in
Figure 9.17, which presents a binary search tree
Figure 9.17 A binary search tree
In this type of representation, a binary tree element is made of three parts:  
an Information part, and two pointer parts indicating the Left and Right 
descendants.  Figure 9.17 represents a special kind of binary tree:  a binary 
search tree.  At each node in a binary search tree, all the elements in the left 
sub-tree have values that are less than the value of the node, while all the 
elements in the right sub-tree have values greater than the node value.  
Binary search trees are very useful in a number of specific applications, 
where searching operations are used very often.



The operations that can be applied to trees include inserting a node, deleting
a node, searching a tree for a given value, and traversing a tree to process 
all its nodes.
Let’s illustrate such operations with a tree traversal operation.  Trees can be 
defined recursively (a tree is either empty or a node with a number of sub-
trees) and most tree algorithms are naturally expressed using recursion.  The
Tree Traversal algorithm can be defined by Pseudocode 9.40.
Pseudocode 9.40 The Tree Traversal algorithm
Let’s trace this algorithm using the tree in Figure 9.17.
We start at the root and process its Left sub-tree (Tree->Left).  This will 
produce the value 11.  Next, we output the value of the root, 15.  Then we 
process the Right sub-tree of the root (Tree->Right) by recursively invoking 
the Tree Traversal algorithm, starting at the node with value 22.  There we 
again process that node’s left sub-tree, giving the value 18.  The root value 
of the sub-tree, 22, is then output and, finally, we output the value of the 
right sub-node of the sub-tree’s root, 31.  Thus, the values were output in 
ascending order, 11, 15, 18, 22, 31.
The Search Tree algorithm will have a similar pattern, where we start 
inspecting the root, and if it is not what we are looking for, we invoke Search 
Tree recursively, first on the root’s Left sub-tree, and then on its Right sub-
tree.  The base case remains the empty tree.  Recursive algorithms are very 
natural for tree structures, and make the manipulation of trees quite easy.

9.6 Review   Top Ten Things to Remember
1. The algorithms considered in this chapter show the many ways in

which the data structures described in Chapter 8 can be manipulated and 
give some idea of their applications.

2. Among the most common operations on arrays are sorting and 
searching.  There are three fundamental strategies for sorting:
• sort and copy:  this strategy sorts an array while copying it to another 
array.
• sort and rank:  this strategy sorts an array and stores its rank in 
another array.
• sort in place:  this strategy sorts an array without copying it to another 
array (the best as far as space complexity goes).

3. Within the three fundamental strategies, there are many 
different algorithms for sorting.  These sorting methods can be divided into 
four categories::
• Count Sort, where enumerating and comparing occur;



• Swap Sort, where pairs of items are swapped;
• Select Sort, where extreme values are selected;
• Insert Sort, where moving and inserting of values occur.

4. A recursive subprogram, introduced in Chapter 7, is one that 
invokes itself and terminates when its base case occurs.  Recursion can be 
used to sort arrays as shown by the Merge Sort algorithm.

5. Searching arrays is usually done in two basic ways:
• one element at a time, called a Linear Search; or
• using a Binary Search which reduces the searched items by half at 
each comparison.

6. Pattern Matching is another search method which is used to 
search a string of characters for a particular sequence of characters.  Two 
different pattern matching algorithms were introduced in this chapter:
• Search and Count, which examines the entire string and counts the 
number of times the given pattern is found, and
• Find First Match, which examines the string until the first occurrence of 
the pattern is found.

7. The measure of the performance of various algorithms has been 
introduced briefly.  The time complexity of an algorithm is usually indicated 
by the “big-O” notation.  Some common complexities and examples are 
shown below, beginning with the higher complexities (slower algorithms).
Order Order Type Example algorithms
O(2n) ExponentialTraveling salesman problem
O(n2) Quadratic Select Sort
O(n log n) N log N (Entropic)Merge Sort
O(n) Linear Sum, Reverse, Linear search
O(log n) LogarithmicBinary search
O(1) Constant Factorial

8. Another way of judging algorithms is through space efficiency:  
the amount of memory required when executing an algorithm.

9. The implementation of the basic abstract data types is usually 
either based on arrays, or on the use of dynamic variables.  We have 
developed such implementations for Stacks and Queues.

10. The implementation of tree data structures is best done with 
dynamic variables.

9.7 Glossary

Execution time:  The time that it takes an algorithm to execute.



In situ:  In place, applied to array manipulations that only require a fixed 
amount of working space; i.e.  the working space required is independent of 
the size of the array.
Order of complexity:  A measure of the complexity of an algorithm, which 
shows how the number of operations required to execute the algorithm is 
related to the size of the problem being solved by the algorithm.
Rank:  In an array, the rank of an element is the number of array elements 
that are of a grater than or equal value to the given element.
Space efficiency:  A measure of the amount of space required by an 
algorithm during execution.
Time complexity:  An expression that gives an estimate of the execution time
of an algorithm

9.8 Problems
1.  Speedy Sort of Binary Values
Given an array B of N binary values (0s and 1s only), create an algorithm to 
sort this array using the least number of passes.
Do this four different ways corresponding to the four methods of sorting.
2. Median:  MidArray
The middle or median value of an array of an odd number of values, N, is 
that value which has as many values less than it as are greater than it.  
Create an algorithm to find this Mid value.
Do it in a least two other ways.
More Problems:  Manipulations of Linear Lists
3. Speedy-Sort
Given an array B of N binary values (say 0s and 1s only) create an algorithm 
to sort this array in two passes.  Can this array be sorted in one pass? 
Indicate how, or else why not.
3. Quick Queue
Create a queue and its operations EnterQ and ExitQ, using the already 
created Stack and its operations.
4. Double Stacks
Two stacks can be implemented by a single array, with the stacks “growing” 
toward each other as shown below.  Create a general algorithm for pushing 
(Push1 and Push2) and popping (Pop1 and Pop2) the appropriate stacks.
Problem 5
5. More Queues
The given diagrams show two more implementations of a queue, using 
arrays.  The first queue Q1 always has its Head at position one 



of the array, and on ExitQ all values are moved up.  The second queue Q2 
moves “snake wise” down the queue (like the circular queue), but when the 
Rear hits the bottom of the array, then all entries are shifted up so that the 
Front is at the top again.  Create programs to Enter and Exit these queues.  
Compare the two queue implementations briefly.
Problem 6
6. Insert Sort
Create a sorting algorithm which enters new values into an array by moving 
existing values to make space for the new value.
7. Merge
Create an algorithm to merge two already sorted arrays into one larger 
sorted array.  Do this in two ways.
8. Recursive Searches
Given an array of N items, create a recursive algorithm to search the array.  
Do this as a linear search and also as a binary search.
9. Other Tree Traversals
Using the following recursive algorithms, traverse the tree of Figure 9.17.
Problem 10

Chapter 10   The Seven-Step Method
This chapter takes all of the concepts that you learned in the previous nine 
chapters and applies they to a case study:  an ACME payroll system, to fully 
illustrate how to use the seven step method to develop algorithms and data 
structures. 
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10.1 Preview
Up until now, we have shown you that programming involves the following: 
• A problem-solving method that can be described by the seven steps 
introduced in Chapter 2.  These steps are:

1. Problem Definition
2. Solution Design
3. Solution Refinement
4. Testing Strategy Development
5. Program Coding and Testing
6. Documentation Completion
7. Program Maintenance
Steps 1 to 4 are usually part of the design stage, and steps 5 to 7 are 

part of the implementation stage.  This problem-solving method is closely 
related to the software life cycle(the various stages in the life of a software 
package.)
• Algorithms that can be represented in many forms.  They all consist of 
a precise set of instructions to follow to solve a problem.
• Data structures that are the means of representing the data used in 
the algorithms.  They must be developed at the same time as the algorithm.



In this chapter, we will explain in greater detail what each of these seven 
steps involves.  At the same time, we will present a complete case study of a
payroll system, to show you how to use each of these steps to develop 
algorithms and data structures. 

10.2 The Seven-Step Method and Applications
Step 1   Problem Definition
Programs are written so that computers can solve problems posed by 
humans.  When faced with having to write a program, you have one thing:  a 
description of the problem to solve.  This description may be very precise or 
vague, but nevertheless is present.
The first thing to do, is to make sure that you understand the problem.  As 
Albert Einstein once said, “If you can’t explain something to a six-year-old, 
you really don’t understand it yourself.” If you are in this state, you must 
examine more closely the imprecise parts of the problem that you do not 
understand. 
For instance, if your teacher asks you to write a program to “Find the 
average of five grades for each of my students”, it might at first sound 
simple.  But, you should ask yourself: 
• “What does average mean, exactly?”
• “Are the grades in percentages or letters?”
• “Do some grades count more than others so that we have to do a 
weighted average?”
Asking yourself such questions forces you to define the problem very 
precisely. 
Once you are sure of what the problem entails, you must jot down a list of 
specifications.  Specificationsare precise definitions of what the program 
must do.  At a minimum, they must include the following: 
• Input:  what data must be input and in what form
• Output:  what data must the program produce and in what form (in 
order to solve the problem)
Virtually all computerized solutions have the structure shown in Figure 10.1. 
Figure 10.1 A typical computerized process
Let’s take the problem of averaging student grades described above.  We 
could generate this list of specifications: 
• Input:  student number, followed by student name, followed on the 
second line by five Real Numbers representing the grades in percentages
Sample: 666 Lucifer El Diablo

20.5 66.6 75.0 70.9 100.0



• Output:  student number, followed on the next line by one Real 
Number for the average and one Character for the corresponding letter 
grade
Sample: 666

66.6 % C
• Process:  for each student, the grades will be summed and averaged, 
and this average converted to a letter according to a predetermined scale. 
Note: At the end of Problem Definition step, you should have a list of 
specifications. 
Problem Definition Application
To better understand this seven-step method, we will show how each step 
applies to the following real-life problem.
We have already seen some simple pay algorithms in chapters 2, 3, 4, 6 and 
7. 
“Computerize the payroll of the ACME Company.”
This is understandably too vague and our first task is to be more precise. 
Up until now, the ACME Company had an archaic system using index cards 
and hand calculators for handling the payroll.  We gather information on the 
existing system, after consulting with the payroll department, and we 
establish the following: 
• We must compute the pay of a sequence of hourly paid employees 
based on a line of input data for each employee. 
• The input data will be kept in a separate file. 
• Each line of data will consist of three integers followed by a character 
string.  These data correspond respectively to the number of hours worked 
(stored in 1/100ths of an hour), the hourly rate (in cents), the number of 
dependents (for tax purposes), and the employee name, and will have the 
format: 

3050 1025 8 Gabrotil Michael
• The end of the data will be indicated by the end-of-file marker provided
by the system. 
• The computation of the gross pay is done by multiplying the hours 
worked by the hourly rate. 
• Hours above 40 are to be paid one and a half times the normal hourly 
rate. 
• For each dependent, the employee gets an exemption of $20 for tax 
withholding computation. 
• Federal and state withholdings are computed by applying rates of 18% 
and 3%, respectively, to the taxable amount. 
• Social security withholdings are computed by applying a 5% rate to the
gross pay. 



• Net pay is computed by subtracting the various withholdings from the 
gross pay. 
• Results must be displayed on one line per employee:  name, followed 
by gross pay, federal withholdings, state withholdings, social security 
withholdings, and net pay in dollars and cents, using the format: 

Gabrotil Michael 312.63 27.47 4.58 15.63 264.95
• After processing all of the employees, a summary line with the totals of
the various withholdings and pay categories should be displayed, using a 
similar format, so that the results are aligned with the preceding individual 
columns. 
• Input data must be validated before they are used.  The following 
validity ranges should be used: 
• The number of hours worked cannot be negative or greater than 55. 
• The hourly rate cannot be less than $3.50 or more than $16.50. 
• The number of dependents cannot be negative or greater than 12. 
Step 2   Solution Design
In this step, we break our problem down into a number of smaller, more 
manageable parts.  We must analyze the original problem, and divide it into 
a number of sub-problems.  Because these sub-problems are necessarily 
smaller than the original problem, they are easier to solve and their solutions
will be the components of our final program.  Each sub-problem is itself 
divided into smaller sub-problems, and this decomposition is carried on until 
we have sub-problems whose solutions are simple.
If we use a solution structure like the one in Figure 10.1, we can readily 
decompose the problem into three sub-problems:  input, process, and output.
We can represent this decomposition by a structure chart.  As we have seen 
in Chapter 4, such a method is called top-down design, and leads to an 
outline of the solution, as in Figure 10.2.  Note that you can use break-out 
diagrams instead, if you are more comfortable with them. 
Figure 10.2 Structure chart
This outline will help us write the algorithm since each of the boxes in the 
structure chart will typically be implemented as a sub-algorithm. 
Note: At the end of the Solution Design step, you should have a structure 
chart describing the hierarchy of your algorithm. 
Solution Design Application
To illustrate this design process a little more, let’s continue to develop the 
payroll system for the ACME Company.  We must define 



all the tasks that have to be done in order to produce the payroll.  This first 
level of decomposition is simple.  The system must be able to do the 
following: 
• Read in and validate pay data for all the employees,
• Process the data for each employee, and
• Display a summary of the payroll operation. 
This leads us to the structure chart of Figure 10.3. 
Figure 10.3 Structure chart for payroll system
In this structure chart, the left-to-right order indicates a probable order of 
execution, but this is not always true because of unseen repetitions and 
condition testing.  There will be some communication between the 
components along the lines in the structure chart, so we must also develop 
interfaces for the data that will be transmitted between these components, 
as we have done in Chapter 7.  The design of Figure 10.3 can still be refined 
by subdividing each of the lower-level components into their major 
components, if this is possible.  For instance, “Process an Employee” might 
be subdivided further into two tasks, as shown in Figure 10.4: 
• “Compute Withholdings” calculates the federal and state taxes and the
social security tax. 
• “Accumulate and Display” adds the various withholdings to the running
totals for all employees, and then displays the results for the current 
employee. 
You might recall that this way of doing things is sometimes called stepwise 
refinement. 
Figure 10.4 Three-level structure chart for payroll system
See Chapter 7 for more information on developing interfaces via parameter 
use. 
A structure chart is actually a skeleton of the structure of the final program.  
Each box in the structure chart will be implemented as a procedureor a 
function.  For example, the box “Data Validation” will be implemented as a 
procedure later on.  This should not be surprising, because the structure 
chart is the result of breaking down the solution function by function. 
In addition to decomposing the problem into its functional components, you 
should also try to identify groups of related operations that could be used 
throughout the program to make implementation easier.  For instance, if a 
group of operations all dealt with a certain kind of data structure, then it 
might be desirable to include them in a separate unit—also referred to as an 
external unit. 
For example, a program that deals with complex numbers could use a 
separate unit that defines a complex abstract data type.  Such separate units
are called “external” because they are physically 



external to the main application.  When the main program needs to use part 
of the external unit, this must be specified in the main program.  Units are 
sometimes called Libraries, Modules, or Packages. 
Our payroll problem has been greatly simplified and we do not anticipate the 
need for external units.  If the payroll application were more realistic and 
were to process thousands of employees, then we could envision a need for 
separate units to process taxes and to deal with all the company benefits 
(health insurance, pension plan, etc.). 
These units could then be documented by a modular design chart like the 
one in Figure 10.5.  This chart shows the various interconnections of the units
we intend to use for this solution.  The arrows show what elements are 
imported from one unit for use in another unit.  In Figure 10.5, “Payroll 
System” imports elements from units “Tax” and “Benefits”.  The figure 
should be completed by indicating which procedures from the “Tax” unit or 
the “Benefits” unit will be used by the “Payroll System”.  If we were 
designing a complete payroll system, we would be able to complete the 
chart once the solution has been refined in the next step. 
Figure 10.5 Modular design chart for a more realistic payroll system
In this structural design step, various alternatives for doing the 
decomposition must be considered, and the relative advantages and 
disadvantages of each alternative must be weighed.  Initially, if you are a 
beginner, you might find it hard to judge the advantages and disadvantages 
of a given solution, but this will become easier with experience.
Step 3   Solution Refinement
Now that we have the skeleton of our solution, we can start putting some 
meat on its bones.  As previously stated, each box in the structure chart 
corresponds to a sub-problem.  We are now ready to develop one algorithm 
to solve each sub-problem as well as the main problem. 
As you have seen so far, algorithms can be represented in many different 
ways:  by flowblocks, flowcharts, data-flow diagrams, etc.  Pseudocode is the 
most common type of algorithm representation developed.  The advantage 
of using pseudocode is that it is program language independent.  It can 
easily be translated into most programming languages, particularly 
imperative languages such as Pascal, Modula-2 or C. 
Since we are now faced with the task of designing the actual algorithms, we 
must at the same time decide which types of data structures to use.  It is 
important to realize that data structure selection and algorithm design are 
directly related.  If you change 



your type of data structure, you must accordingly change your algorithm.  
This is why both must be developed concurrently. 
Note: At the end of the Solution Refinement step, you should have developed
pseudocode for each box of the structure chart.  As well, all of the data 
structures and variables used must be defined. 
Solution Refinement Application
At this stage of design we need only define data types for the variables used 
for (i) input, (ii) major processing, and (iii) output.  Temporary variables and 
counters need not be specified at this time.
For our payroll program, we will define a record variable, Employee Data, 
with fields Name, of type String, and Hours, Rate and Dependents of type 
Integer.  We will also specify simple variables like Gross Pay, State Tax, 
Federal Tax, Soc Sec Tax, Net Pay, Gross Total, Soc Sec Total, Federal Total, 
State Total, and Net Total.  All these simple variables are Integers, because 
computations involving money must be exact, and only integer arithmetic 
gives exact results.  We will also need a Boolean variable Valid Data to 
indicate the result of the data validation. 
Using these simple variables, we can begin to refine the high-level solution 
defined by the structure chart of Figure 10.4.  Using pseudocode, we develop
the algorithms for each functional part of the solution, starting with the main 
program:  Calculate Payroll. 
Pseudocode 10.1 The Calculate Payroll algorithm
In order to simplify the pseudocode, we will use collective names to 
represent groups of variables, like Totals to represent the following five 
variables:  Gross Total, Soc Sec Total, Federal Total, State Total, and Net Total. 
This makes it possible to have shorter argument lists in our invocations.  The 
subprograms Data Validation and Process Employee are shown in 
Pseudocode 10.2 and 10.3. 
Pseudocode 10.2 The Data Validation sub-algorithm
Pseudocode 10.3 The Process Employee sub-algorithm
Here, the collective name Withholdings has been used to represent the three
variables Federal Tax, State Tax, Soc Sec Tax. 
Pseudocode 10.4 The Compute Withholdings sub-algorithm
Here we have used the collective name Pay Data to represent the four 
variables Net Pay, Federal Tax, State Tax, Soc Sec Tax. 
Pseudocode 10.5 The Accumulate and Display sub-algorithm
Step 4   Testing Strategy Development
We have now completed the pseudocode for each part of our program.  You 
might think that the next step consists of translating this pseudocode into 
code.  Wrong!
At this point, you need to check your design to see if it will produce the 
expected results.  It is much easier to check the design now, 



when we can easily make the necessary corrections, than later, when the 
entire code is written.  To check your design, you need to think up a testing 
strategy.  This strategy will be used for two things:  (i) to check your design 
now, and (ii) once you decide upon a final design and write the code, to 
check if the final program works correctly.
The advantage of deciding on a testing strategy now, as opposed to after 
coding is completed, is that you are still at the design stage where the 
specifications are fresh in your mind.  The testing can then be planned with 
those specifications in mind, from a relatively objective viewpoint.  If 
changes need to be done, it will not be as painful as if the whole program 
were already written.  If the entire program were written, you would be more 
prone to trying little fixes to solve the problems rather than thinking about 
changing the underlying design. 
• For smaller programs, it is usually enough to define a variety of test 
cases, each case including the input data and the corresponding expected 
results.  These test cases must include extreme cases and erroneous cases.  
For instance, test cases for a grades program should include a negative 
grade, an erroneous value, to make sure that the appropriate error message 
is produced.  A procedure involving a number of data elements should be 
tested with zero or the maximum allowed number.  Test data should be 
included to make sure that all the program statements, without exception, 
are executed at least once.
• For large programs, the testing and the coding must be planned 
together, piece by piece.  The approach chosen may be top-down, bottom-
up, or a combination of both.
• Top-down testing means to start developing the program component at
the top of the structure chart and working down component by component, 
thus the name “top-down.” In order to be able to do this, we must use 
program stubs for the lower level components in the structure chart during 
the initial steps of development.  A program stub is a small piece of program 
that substitutes for a larger piece that will be written later.  It may simply 
leave a trace of its execution by printing a message or it may also supply 
predefined results.

For example, the structure chart given in Figure 10.4 shows that the 
main program component, Calculate Payroll, will have three major sub-
components:  Data Validation, Process Employee, and Display Summary.  We 
could start a top-down development by writing the main program and one of 
these three major procedures, but the other two procedures and the lower 
level procedures could merely be stubs. 



In pseudocode, a stub for the Display Summary procedure might be
Pseudocode 10.6 Preliminary Display Summary sub-algorithm

A message indicating that the procedure has been called is displayed.  
This stub would later be replaced by a procedure that actually does the 
desired processing, but meanwhile the program can be run to make sure that
other procedures are called in the right order, and that those procedure calls 
are correct. 
• Bottom-up testingmeans that the components at the bottom of the 
structure chart are coded and tested first, and then the next higher level is 
developed and tested, and this is repeated all the way up the structure chart.
Since the bottom-level components usually cannot operate alone, it is 
necessary to write special programs called drivers to test the components. 

For instance, let’s assume that we have just developed the Compute 
Withholdings subprogram.  Before incorporating our subprogram into a larger
program, we should write a small driver program to check it.  A testing driver
might include the following pseudocode fragment: 
Pseudocode 10.7 Fragment of code for a testing driver

This small driver would allow you to test subprogram Compute 
Withholdings with a variety of arguments.  You could even write a more 
sophisticated testing program, which generated random test arguments.  
Obviously, some of the results must still be checked manually. 
• Often a combination of both bottom-up and top-down approaches is 
used.  With the bottom-up approach, frequently used utility procedures might
be coded and tested independently.  Then development and testing could 
switch to a top-down approach with stubs being used for major program 
components.  When utility procedures are used as development progresses, 
there is a good degree of confidence in them and this allows us to 
concentrate on the testing of major components. 
Note: At the end of the Testing Strategy Development step, you should have 
your testing strategy developed, including the input and expected output 
data for all test cases, as well as the pseudocode for any necessary stubs or 
drivers. 
Development of Testing Strategy Application
Before we start translating the algorithms we developed earlier into code, we
must plan our program testing.  Experience has shown that when testing is 
not well planned, it takes an enormous amount of time.  Early testing can 
uncover forgotten cases or unexpected combinations of data.  Modifications 
to correct these design defects 



are much easier to make at this stage, since no actual programming has 
been done.  Therefore, the testing strategyshould be defined before coding 
begins and should lead to the definition of a set of test data that is both 
comprehensive and practical.
So, here we will define our testing strategy before we begin to code.  We 
define some test data to be the following: 
• Comprehensive
• Practical
• Certain to execute every part of the program at least once. 
Once this is done, some subtle errors will undoubtedly remain.  When those 
errors pop up later (probably when someone else is using your program), 
they should be corrected by the programmer who is responsible for the 
maintenance of your program (usually you).  This is the basis for one of the 
most well-known sayings in the computer science field: 
Testing can show the presence of bugs,
but cannot guarantee their absence. 
For our payroll program, we need to identify the various cases the test data 
must cover as shown in Figure 10.6. 
Figure 10.6 Various cases for Test Data
We will use these cases and combine them to generate test data as follows: 
• We will use boundary value data, such as $3.50 for a normal value and 
$3.49 for a wage less than $3.50. 
• For erroneous test data we should have cases 1, 2, and 3 individually, 
then cases 1 and 2 together, 2 and 3 together, 1 and 3 together, and 1, 2, 
and 3 together. 
• Cases 4 and 5 can be combined with cases 6 and 7 to produce several 
normal cases. 
• Case 8 should be tried alone once to make sure the results are zero. 
Using this approach, we define the test data shown below, where we have 
used artificial employee names suggestive of the errors. 
Figure 10.7 Test Data Definition
The expected results for these test data have to be computed manually by 
following the pseudocode and given here.  These computations should give 
us some insight into the way our algorithms operate.  Here are the expected 
results for the test data given above: 
Figure 10.8 Expected Results for Test Data
Computation of Weekly Pay

Gross Fed State Soc. Net
Invalid hours for hours-negative



Invalid hours for hours-too-large
Invalid rate for rate-too-low
Invalid rate for rate-too-high
Invalid dependents for dependents-negative
Invalid dependents for dependents-too-large
Invalid hours for hours-and-rate
Invalid rate for hours-and-rate
Invalid hours for hours-and-dependents
Invalid dependents for hours-and-dependents
Invalid rate for rate-and-dependents
Invalid dependents for rate-and-dependents
Invalid hours for hours-rate-dependnts
Invalid rate for hours-rate-dependnts
Invalid dependents for hours-rate-dependnts
no-overtime-no-dep 160.00 28.804.80 8.00 118.40
no-overtime-with-dep 160.00 21.603.60 8.00 126.80
max-overtime-no-dep 250.00 45.007.50 12.50185.00
maximum-hrs-and-dep 375.00 24.304.05 18.75327.90
maximum-rate-and-dep660.00 75.6012.6033.00538.80
zero-hour-and-dep 0.00 0.00 0.00 0.00 0.00
Totals1605.00 195.30 32.5580.251296.90
Step 5   Program Coding and Testing
Starting with our pseudocode algorithms, this step consists of coding the 
actual computer program.  Then, using our testing strategy, we test the 
program and compare our test results with the expected ones.  For large 
programs, the coding will be done progressively, the various components 
being coded with the necessary stubs and drivers, so that they can be tested
systematically.
Errors in design or peculiarities of the programming languages used may 
cause difficulties in coding, and prevent the implementation of some design 
characteristics.  In this case, we must go back to the design step and modify 
our design.  The programming and coding step is finished when all the 
coding has been done and when all the test data have been correctly 
processed. 
Step 6   Documentation Completion
Whether or not a program is to be used by others, it must be documented.  
Both experienced and naive users must be given instructions for running the 
program.  Furthermore, someone wishing to modify the program must be 
given information about what design 



decisions were made, and what implementation and testing problems were 
encountered.  Even the original programmer needs documentation, to be 
able to modify the program long after it has been developed.  It is always 
extremely surprising to realize how quickly one forgets design decisions 
along with the reasons why they were made.
Documentation does not begin in this sixth step of our problem–solving 
method.  It begins with the first step of program development and continues 
throughout the lifetime of the program.  The program itself, with its 
comments, is called internal documentation, whereas the testing information
is part of the external documentation(all documentation other than the 
program listing).  At each step of the program development process, some 
documentation is produced, as shown in Figure 10.9.
Figure 10.9 Documentation during the Seven Steps

Steps Documentation produced
1. Problem definition The problem specifications, including a precise 
description of the input/output
2. Solution design A description of the design, with structure charts and
modular design charts
3. Solution refinement Data specifications, pseudocode, and unit 
interfaces
4. Testing strategy developmentAn outline of the testing strategy, test 
data, and expected results, as well as pseudocode for drivers and stubs
5. Program coding and testing The program code (internal 
documentation), test data, and results
7. Program maintenance Change log and, if the changes are important, 
all the documentation normally produced for a complete program (as in the 
preceding steps)

All of this documentation must be collected, and must be kept current (with 
perhaps the exception of the pseudocode) throughout the lifetime of the 
software.  In addition to the above documentation produced at each step, 
some additional user documentation may be needed.  This documentation 
must provide the user with enough information to be able to use the program
and its functions fully, without providing the mental burden of 
implementation details.  This type of documentation is often referred to as a 
“user’s manual”. 
It is usually helpful to develop a preliminary version of the user 
documentation during the problem definition step and then to refine it once 
coding and testing are done.  This preliminary version of the user 
documentation can be given to the users, to verify that you 



have correctly understood the problem and are producing a program that will
satisfy the users. 
Documentation Completion Application
The documentation will include the problem definition, the design 
documents, a description of the testing performed, a history of the program 
development and its different versions, and a user’s manual.  Such a manual 
is designed for a naive user and illustrates how to prepare input data, how to
run the program, and how to obtain and interpret results.  The following is a 
sample ACME Payroll User’s Manual:
ACME Payroll User's Manual
Payroll is a program to compute and display the weekly pay of hourly paid 
employees.  For each employee, it will read a series of four data items 
separated by at least one blank:  number of hours worked during the week 
(0–55), hourly rate of pay ($3.50–$16.50), number of dependents (0–12), and
name of employee (20 characters).  If the data are valid, the program will 
compute and display federal (18% of taxable income), state (3% of taxable 
income), and social security (5% of gross pay) withholdings, as well as gross 
and net pay for the employee. 
• The program will read data for each employee from the file Payroll.data
until it reaches the end of the file.  It will produce results on the screen.  
Input data format is such that three integer values precede a character 
string, as in
4500 600 3 Allan Mackenzie
for 45.00 hours worked, $6.00 per hour, and 3 dependents. 
• Output data will be written one line at a time, each line corresponding 
to an employee.  A normal output line will consist of a 20-character string 
followed by five values.  The last line will contain the word "Totals" followed 
by five values and will be separated from the previous output line by a blank 
line.  The output will be preceded by the title lines: 
Computation of Weekly Pay
Gross Fed State Soc.  Net
• A normal output line will look like
Allan Mackenzie 285.00 40.50 6.75 14.25 223.50
• Erroneous data will produce error messages of the form
Invalid hours for Robert A.  Verner
Invalid rate for Simon J.  C.  W.  Surry
Invalid dependents for T.  Guy Rimmer
• These messages will appear if the values read are not within the given 
limits.  A single employee data line with erroneous data 



can generate from one to three error messages.  The erroneous data have to 
be corrected and resubmitted. 
To run the program, enter the payroll data in file Payroll.data and execute 
Payroll. 
Step 7   Program Maintenance
Program maintenance is not directly part of the original implementation 
process, but needs special emphasis.  All activities that occur after a 
program first becomes operational are part of the program maintenance.  
Many large programs have long lifetimes that often exceed the lifetime of the
hardware they run on.  Usually, the cost of program maintenance over the 
lifetime of a program will be greater than the total program development 
costs.
Program maintenance includes the following:
• Finding and eliminating previously undetected program errors;
• Modifying the current program, often to improve its performance, or to 
adapt it to new laws or government regulations, or to adapt it to new 
hardware, or to a new operating system;
• Adding new features or a better user interface, or new capabilities to 
the program; and
• Updating the documentation.
Maintenance is an important part of the life cycle of a program.  It is also 
important from a documentation point of view, since changes to a program 
will require updating the existing internal as well as external documentation. 
Maintenance documentation will include many of the results of the program 
development steps:  design documents, program code, and information 
about testing. 
The discovery and elimination of previously undetected errors inevitably 
involves new test data for showing that the bugs have indeed been fixed.  
Similarly, modifications to the program will entail new test data to prove the 
correctness of the modifications.  In both cases, once the modifications are 
completed, all the old test data—perhaps changed because of the 
modifications—must still be run correctly to demonstrate that the 
modifications have not introduced new bugs. 
Since most program maintenance is done by someone not involved in the 
original design, it is imperative that the programs be well designed and well 
structured, as well as readable, and that the documentation be complete and
accurate. 
Program Maintenance Application
Improvements to the payroll program are numerous.  Here are a few possible
ones:



• Having the program actually produce the paychecks for the 
employees;
• Adding a unit to compute tax withholdings in a more flexible way;
• Adding an interactive way of fixing the erroneous data. 

10.3 An Advanced Case Study   Building a Text Index
This section presents a larger and more complex case study, one that 
exercises everything that we have learned in the previous chapters.  It will 
also show some of the advantages that can be obtained from a modular 
construction, which is a concept introduced in Chapter 7. 
Step 1   Problem Definition
We want a program capable of the following:

1. Reading in some text stored in a given file;
2. Collecting all the significant words of that text together with the 

page numbers where the words occur; and
3. Displaying an alphabetical index of the words with their page 

numbers. 
A word will be defined as a sequence of letter or digit characters, starting 
with a letter.  To find whether or not a word might be significant, we will use a
dictionary of trivial words that must be ignored (words like “the”, “a”, “at,” 
etc.) To simplify, we will use the backslash character (“\”) to indicate the end 
of a page. 
The program will prompt the user for the name of the dictionary of trivial 
words, for the name of the text file, and the name of the new index file, using
the following format for the output messages. 
Give name of trivial words file: 
Give name of text file: 
Give name of output file: 
Index complete
The format of the index will be the following: 
June 1 8
Karine 1 2 3 4 5 6 7 8

9 10
Kludge 5 9
Step 2   Solution Design
The program will use functions for the following purposes:
• Getting a word from the input file,
• Inserting a word in the index if it is deemed to be significant,
• Comparing two words to alphabetize,
• Displaying a word from the index, and
• Displaying an item from the index (a word and its associated page 
numbers). 



The program will keep the index in a binary search tree (introduced in 
Chapter 9), a data structure most suitable and efficient for cases where 
operations like searches and insertions are numerous.  This structure also 
has the property of keeping its elements ordered, which makes it possible to 
display its contents easily in order.  We will define an ADT binary search tree,
and will keep it in a separate module or external unit consisting of the binary 
search tree definitions and operations. 
Like a binary tree, a binary search tree is made of nodes, and each node has 
a left and a right descendant (either or both of which can be absent).  As we 
have seen in the last section of Chapter 9, the main property of a binary 
search tree is that all the left descendants of a node have a value that is less 
than the node value, and all the right descendants have a value greater than
the node value. 
Likewise, the page numbers associated with a word will be kept in a queue, 
where each page number is unique and will be output in the order of 
insertion, that is from lowest number to highest number.  Here again we will 
define a separate unit for the ADT queue, to include the definitions and 
operations of queues.  Remember that queues are first-in-first-out structures:
the elements in a queue are output in the order in which they entered the 
queue. 
Our solution will be illustrated by the modular design chart of Figure 10.10.  
This chart illustrates the relationships between the various units of our 
solution:  “Build Index” will use types and operations from ADT Binary Search
Trees and ADT Queues. 
Figure 10.10 Modular design chart for building a text index
We will use two Binary Search Trees for two purposes:
• Storing all the trivial words, and
• Storing all the significant words from the text. 
Our solution will include the functions we have mentioned earlier as well as 
functions from the binary search trees unit and the queues unit.  We will use 
the following binary search tree operations: 
• Initialization of a tree,
• Searching for a word in a tree,
• Inserting an element in a tree, and
• Traversing a tree to display its contents (elements and words). 
We will use a queue structure to store all the page numbers associated with 
a word.  We will use the following queue operations: 
• Initializing a queue,
• Inserting an element in a queue,
• Eliminating an element from a queue, and
• Counting the elements in a queue. 



We can now proceed to draw the structure chart for our solution as shown in 
Figure 10.11. 
Figure 10.11 Structure chart for building a text index
Step 3   Solution Refinement
To refine our solution we will need to define the functional elements of “Build 
Index”, as well as the functional elements of units “Binary Search Trees” and 
“Queues”.  If we are lucky, someone might already have developed such 
useful units, and all we will have to do will be to use them, or, more likely, 
adapt them before using them.  We can also give you a hint.  If you have 
access to computer science books, you will find such units already defined; 
use them!
We will also need to define the data structures that will be used in our 
program.  Obviously, the elements of our index will be kept in a binary 
search tree.  Each element record will be comprised of (i) the corresponding 
word and (ii) its list of page numbers.  If we keep the words in the tree nodes,
we will have to reserve enough space for the longest word, and this is not 
necessarily the most efficient way to use memory space, as much of this 
space will be empty. 
Instead, we’ll use a well-known technique of storing the words in a long 
buffer(storage area), to keep only nontrivial words, and no duplicates.  The 
buffer will be a big array of characters, and each word in it will be identified 
by the index of its first character, as shown in Figure 10.12.  Note that every 
character has a corresponding index number. 
Figure 10.12 Word buffer organization
With the buffer, we will keep two special indices, Old Index and New Index.  
Old Index always points to the next free space in the buffer.  New Index is 
used to enter a new word in the buffer, before deciding whether to keep it or 
not.  To keep a new word in the buffer, Old Index is updated to the value of 
New Index. 
Figure 10.13 Binary search tree organization
The elements kept in the binary search tree will have the structure illustrated
by Figure 10.13.  Each element will have five parts: 
• an Index to the word buffer, called Key,
• a Last Page number (to avoid keeping duplicate page numbers),
• a Pages queue,
• a Left pointer for the tree structure, and
• a Right pointer for the tree structure. 
With these data structures established, we can develop the pseudocode for 
Build Index as follows. 

1. First we initializing various variables. 
2. Then, we read in the trivial words file and build the trivial words 

tree. 



3. Next, we read the text and insert the nontrivial words in the word
index tree. 

4. Finally, we traverse the word index tree, displaying the elements 
as we encounter them. 
Pseudocode 10.8 The Build Index algorithm
Besides some output subprograms, this program uses two important 
subprograms, Get Word, to read a word, and Insert Word, to insert a word in 
a binary search tree.  These two subprograms are repeatedly invoked in the 
two loops that build the Trivial and Index trees.  The two loops read the text 
between words character by characters until a letter, denoting the start of a 
word, is detected. 
The loop that builds the Trivial tree ignores all inter-word characters.  When a
letter is encountered, the Get Word subprogram is invoked to read the word. 
Since all words read from the Trivial File are, by definition, to be inserted into 
the Trivial words tree, Insert Word is invoked for every word. 
The action of the loop that builds the Index tree is somewhat different.  In 
that loop, two of the inter-word characters are detected and lead to special 
actions: 
• The end-of-line character causes the Line number to be incremented, 
and
• The end-of-page character causes the Page number to be incremented.
As in the first loop, when a letter is encountered, the second loop invokes the
Get Word sub-algorithm to read the word.  However, in the second loop, the 
word is not inserted into the Index tree until a search of the Trivial words tree
has shown that the word is not trivial. 
Get Word reads in a word, character by character, and stores it in the 
character buffer.  This storage will only be temporary if it is discovered that 
the word is trivial or has already been encountered.  Get Word also leaves a 
special inter-word marker in the buffer to separate the words.  This marker 
could either be the size of the word or a special end of word marker.  Get 
Word only modifies New Index, it does not modify Old Index.  Thus, several 
successive calls to Get Word will simply overwrite the last word in the buffer 
and leave no permanent record of the words that were read. 
Pseudocode 10.9 The Get Word sub-algorithm
In Insert Word, we first check to see whether or not the word is already in the
binary search tree.  If it is, we only need to update its element in the tree by 
adding a new page number to its associated queue (if that page number is 
already there, we do nothing, since we do not want duplicate page numbers).
If the word is already in the 



tree, we do not want to keep a duplicate in the buffer and, for this reason, we
do not update Old Index. 
If this is a new word, Insert Word creates a new element for the tree and 
initializes its associated queue.  Since we will also use Insert Word to build 
the Trivial tree and since trivial words do not need a page queue, we will use 
a zero page number for trivial words.  Once the element is ready, we insert it
into the tree and we update the Old Index so that, this time, the word is kept 
in the buffer.  The pseudocode for the Insert Word sub-algorithm is shown 
below. 
Pseudocode 10.10 The Insert Word sub-algorithm
To display an element, we first display the associated word followed by a 
number of spaces to align all index entries.  Then we output the page 
numbers after removing them one by one from the Pages queue.  As we 
output them, we count them and, if they take more than one line, we 
continue on the next line after skipping the space underneath the word. 
Pseudocode 10.11 The Display Element sub-algorithm
To display a word we only have to display all its characters from the buffer, 
and then to pad the rest of the word space with blanks. 
Pseudocode 10.12 The Display Word sub-algorithm
Binary Search Tree Unit
Although this unit is not directly part of our problem, we need it to 
implement our solution.  A tree will be defined as a pointer to a tree node, 
and a tree node will include an element and two pointers (left and right), as 
shown in Figure 10.9.  To illustrate once more a binary search tree (see Figure
9.17 in Chapter 9), we can show the tree structure corresponding to the 
following list of trivial words.
for On on Had a is this At If To as her much the when up was we Am Did He 
Its That With an by do did be but has his like nor ours there will you with 
whom A An But For Do Has His I In My Much She The We You all and at from 
have hers if it me my of or so their these those to us whose All As By From 
Have No Our So This Will Your am are etc had he him in its mine no not off 
our she that them they who your yours
Note that the root of the tree is the first word of the list, “for”, its left 
descendant is the second word of the list, “On” (upper case letters have a 
smaller code than lower case letters), its right descendant is the third word 
of the list, “on” and so on.  We have been careful to set the trivial words 
above in an order that gives the best tree structure (most nodes actually 
have two descendants).  The top part of the corresponding tree is shown in 
Figure 10.14. 
Figure 10.14 Trivial words tree



In Figure 10.16, we give a partial tree of trivial words, as printed by utility 
subprogram Display Tree, which shows the tree structure.  See if you can 
redraw this figure with its connecting lines to get a complete picture of the 
tree, as in Figure 10.14. 
Figure 10.15 Partial tree of trivial words output by Display Tree
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The Binary Search Tree external unit implements the ADT binary search tree. 
It includes the following operations. 
• Initialize Tree(Tree)
This is the first operation to call, in order to initialize Tree. 
• Delete Tree(Tree)
This operation deletes all information about the Tree and its data. 
• Insert Node(Tree, Element)
This operation inserts Element at the proper position into the Tree, according 
to the key for the Element.  If a node already existed with the same key, it is 
updated with the value of Element.  The tree 



insertion operation is defined simply as a recursive subprogram (it calls itself 
on the left and right sub-trees). 
Pseudocode 10.13 Insert Node recursive sub-algorithm
• Delete Node(Tree, Key)
This operation finds the element with this Key and deletes it from the Tree.  If
no node has this Key, Tree is unchanged. 
• Traverse Tree(Tree, Process)
This operation applies Process to each node of Tree in order.  Note that Tree 
is underlined, which makes it an in-out parameter (called by reference), as 
Process might modify the Tree contents.  This tree traversal operation is a 
variation of the traversal algorithm we saw at the end of Chapter 9; it is 
recursive and very simple. 
Pseudocode 10.14 Variation of Traverse Tree algorithm
• Search Key(Tree, Key, Element, Success)
This operation searches for an element identified by Key in the Tree.  If it 
finds it, it returns the complete Element, and Success is set to True, 
otherwise Success is set to False.  The tree search operation is also recursive 
and very simple. 
• Display Tree(Tree, Indentation, Display Key)
This operation displays Tree keys with indentations to show the Tree structure
(we showed it above). 
• Display Key(Element)
This operation displays a key value. 
Pseudocode 10.15 The Search Key algorithm
Queues Unit
The external unit Queues implements the ADT Queues whose operations are 
described below.  A queue will be defined as a record with two indices, a 
counter, and an array of elements, as shown in Figure 9.15 in Chapter 9.
• Initialize Queue(Queue)
Creates an empty Queue. 
• Enqueue(Queue, Item)
Inserts element Item at the end of Queue. 
• Dequeue(Queue, Item)
Deletes first element of Queue, returned in Item. 
• Count Queue(Queue) function
Counts current number of elements in Queue. 
• Queue Head(Queue, Item)
Returns value of first element of Queue in Item. 
These operations have already been described in pseudocode in Chapter 9. 
Step 4   Development of Testing Strategy



To test our program we need a trivial words file and a text file.  These are 
various cases we can envision:

1. Empty trivial words file:  the index will include all the words in 
the text. 

2. Only one trivial word:  the only trivial word will not appear in the 
index. 

3. One-page text file:  the page numbers are all the same, and 
appear only once for each word. 

4. Text file with several pages:  general case. 
5. Text file with only trivial words:  the index will be empty. 
6. Text file with no trivial words:  the index will include all the words 

in the text. 
7. Word found on more pages than fit on a single line:  necessary to

test the splitting of the page numbers over several lines. 
To test all cases, we will need at least three trivial words files: 
• Trivial 1:  an empty file for case 1
• Trivial 2:  a file with the single word “kernel” for case 2
• Trivial 3:  a general file including the list we have given earlier. 
We will also need at least three special text files: 
• Text 1:  a one-page text file with words in alphabetical order

Sample: albatross beauty cartography demon earl fugitive gross 
helicopter indeed joy kernel lullaby mammoth nerd opera possible 
quintessence refrigeration subtlety ton utilitarian vampire wapiti xylophone 
yak zero
• Text 2:  the same file as Text 1 but with an end-of-page mark between 
every word

Sample: albatross\beauty\ cartography\ demon\ earl\ fugitive\ gross\
helicopter\ indeed\ joy\ kernel\ lullaby\ mammoth\ nerd\ opera\ possible\ 
quintessence\ refrigeration\ subtlety\ ton\ utilitarian\ vampire\ wapiti\ 
xylophone\ yak\ zero
• Text 3:  a file with only two words repeated thirty times with an end-of-
page after each occurrence. 

Sample: albatross beauty\ albatross beauty\ albatross beauty\ 
albatross beauty\ albatross beauty\ albatross beauty\ albatross beauty\ 
albatross beauty\ albatross beauty\ albatross beauty\ albatross beauty\ 
albatross beauty\ albatross beauty\ albatross beauty\ albatross beauty\ 
albatross beauty\ albatross beauty\ albatross beauty\ albatross beauty\ 
albatross beauty\ albatross beauty\ albatross beauty\ albatross beauty\ 
albatross beauty\ albatross beauty\ albatross beauty\ albatross beauty\ 
albatross beauty\ albatross beauty\ albatross beauty
For the various cases we will use the following combinations: 



• Cases 1 and 3:  Text 1 and Trivial 1.  The index contains all the words in
the same order with only a page 1 reference. 
• Cases 2 and 3:  Text 1 and Trivial 2.  The index contains all the words 
except “kernel” in the same order with only a page 1 reference. 
• Cases 4 and 6:  Text 2 and Trivial 3.  The index contains all the words in
the same order each with a different page reference. 
• Case 5:  Text 3 and Trivial 3.  The index is empty. 
• Case 7:  Text 3 and Trivial 2.  The index contains two words each with 
thirty page references. 
You should also add words that are longer than the word length to make sure 
they are treated correctly, and of course a long and realistic text. 
Step 5   Program Coding and Testing
The main program follows from our pseudocode.  The details of this stage are
covered by the Practice book.
Step 6   Documentation Completion
All the results of our previous steps should be part of our documentation:  
problem specifications, solution design and refinement, testing strategy, 
program code, and testing results.  We must also add a user’s manual, as 
shown below:
User's Manual for the Build Index Program
The Build Index program builds the index of a text.  The program prompts 
you for a file of trivial words (words of the text that must not be part of the 
index).  The program then prompts you for the name of the text file, and the 
name of the output index file.  To run it, select Execute in the menu and 
double-click on Build Index.  The program will start executing and will start 
prompting you.  When the execution is over, the program will display the 
message: 
Index complete
• You can examine the index and print it if need be.  The index file has 
the input text with added line numbers, and an alphabetical list of all the 
words in the text (except for the trivial words) followed by a list of page 
numbers as in the following: 
June 1 8
Karine 1 2 3 4 5 6 7 8

9 10
Kludge 5 9
Step 7   Program Maintenance
A non-negligible part of the software life cycle, program maintenance, starts 
as soon as the program is released to its user.  The user might find some 
bugs:  this program is not simple enough to be able to feel sure that there 
are no bugs left.



Maintenance includes bug removal, but it also includes making 
improvements to a program or a system.  In the case of Build Index, there 
are three areas of improvement: 
• We can improve the program by giving the user the option to list the 
trivial words used as part of a better documentation of the index. 
• We can also make the program recognize true end-of-pages instead of 
an arbitrary sign. 
• We can also modify the program so that it displays page and line 
numbers as part of the index.
10.4 Review   Top Ten Things to Remember

1. In this chapter, we have reviewed the seven-step problem-
solving method that was introduced in Chapter 2, and illustrated in various 
other chapters.  This has made it possible to link a number of the concepts 
that were introduced in the previous chapters. 

2. We have illustrated here mostly the steps related to design, as 
the implementation stage is programming-language dependent, and cannot 
be discussed in total abstraction from the actual programming context. 

3. At the end of Problem Definition step, you should have a list of 
specifications.  These are precise definitions of what the program must do.  
At a minimum, they must include input (what data must be input and in what
form) and output (what data must the program produce and in what form in 
order to solve the problem). 

4. At the end of the Solution Design step, you should have a 
structure chart describing the hierarchy of your algorithm.  Developing a 
structure chart, using top-down design, will help us write the algorithm to 
solve our problem since each of the boxes in the structure chart will typically 
be implemented as a sub-algorithm. 

5. At the end of the Solution Refinement step, you should have 
developed pseudocode for each box of the structure chart.  As well, all of the
data structures and variables used must be defined. 

6. At the end of the Testing Strategy Development step, you should 
have your testing strategy developed, including the input and expected 
output data for all test cases, as well as the pseudocode for any necessary 
stubs or drivers. 

7. The implementation stage, steps 5 through 7, are thoroughly 
illustrated in the Practice book.  It is important for you to remember that a 
lack of method will be disastrous for you when you start developing larger, 
more complex programs. 



8. The complexity of a given application grows quickly, as the 
number of interactions between the various parts of a system increases.  
This was illustrated by the examples presented in this chapter. 

9. The complete example to build a text index is relatively small, 
but still big enough to show that a larger system is harder to understand, 
even under good conditions. 

10. It is vital for you to proceed to the Practice book, keeping in mind
everything that was presented in Chapters 2 to 10.  You will have to write 
and run real programs using a given programming language, and this is 
where you will notice that a lack of method is extremely costly in time. 

10.5 GlossaryBuffer:  A holding area for data. 
Driver:  A program that is used to test a subprogram by simulating the 
context from which the subprogram will be invoked with the full program is 
completed. 
External documentation:  A program description that is designed to serve the
needs of the users of the program.  It thus describes the program in terms of 
the way in which it is used and its observable actions. 
External unit:  A collection of subroutines that are compiled separately from 
the main program and are concerned with the manipulation of a particular 
type of data, for example, an abstract data type is frequently implemented 
as an external unit. 
Internal documentation:  The internal structure and workings of a program 
described in a form to assist programmers who will have to make corrections 
or other modifications to the program in the future. 
Software life cycle:  The sequence of stages that a program passes through 
during its useful life, these stages essentially correspond to the seven steps 
of software development described in this book. 
Stub:  A temporary version of a subprogram that provides a very simplified 
simulation of the action of the subprogram until the subprogram itself is 
written.  Studs allow early testing of the routines that will call the 
subprogram.  A typical action of a stub program is to output a message that 
it has been entered so that the logic of the calling program can be checked. 
Testing strategy:  A plan for the orderly verification of the execution of a 
program during development. 

10.6 Problems
The following is a series of problems and projects to be solved using the 
seven-step method presented in this chapter.  As we have done 



in the case studies, all of the steps, except for the actual implementation, 
have to be followed.  These problems are presented in order of increasing 
difficulty and complexity. 
Level 1 — Getting Started
The first-level problems require the development of your first programs. 
1. A Guessing Game
You are on vacation at home and planning to enjoy your free time.  Alas! your
parents ask you to take care of your little sister, and she is a real pest.  In 
order not to see your vacation time slowly wasted, you decide to have the 
computer entertain your little sister.  To do this, you want to develop a simple
game program that will pick randomly an integer number between 1 and 
1,000.  The program will ask your little sister to guess that number in a 
maximum of ten tries, and will produce an appropriate message when the 
end of the game is reached. 
Obviously, the program needs to be interactive.  It will display a message at 
the start of the game and prompt your sister for a guess.  Each time she 
makes a guess, it will have to indicate whether the guess was between the 
limits or was high or low, or detect that the guess was right.  At the end of a 
game, the program will allow your little sister to decide to continue to play or
to stop. 
The input format is simply that of an integer number, or a character for yes 
or no.  The output formats are mostly messages. 
Start-of-game message: 
Let's play a guessing game. 
I pick a number between 0 and 1,000.  You have to guess it.  But you have 
only 10 tries to guess my number. 
End-of-game messages: 
Congratulations! 999 is right. 
You lose! My number was 999. 
Do you want another game? (Y/N)
Game messages: 
Make a guess: 
Wait a minute! My number is greater than 0!
You wasted a guess! My number is 1,000 or less. 
Well ...  your number is too small. 
Sorry, but your number is too big. 
Remember! We have already seen this example in Chapter 4. 
2. Computing a Customer's Change
Your cousin just opened a small store and does not have the funds to buy 
one of those sophisticated cash registers that compute the change to return 
to a customer.  Since he still possesses his old 



personal computer, he asks you to develop a program that, given an amount 
due and a payment, computes the change.  This way he will be able to make 
sure that whoever he hires will not make a mistake on the change to give 
back to the customer.  The program will compute the change repeatedly until
a zero value is given to indicate termination. 
The change must be computed in dollar bills, quarters, dimes, nickels, and 
pennies, with the smallest number of coins possible.  The clerk will enter the 
amount due in cents, the payment also in cents, and the program will return 
the number of dollars, quarters, dimes, nickels, and pennies to give back.  
The clerk will be prompted to enter the amount due and the payment by the 
following messages: 
Enter amount due in cents (negative or zero to stop): 
Enter payment in cents: 
The change will be indicated in the following way: 
Dollars 1
Quarters 1
Dimes 1
Nickels 1
Pennies 1
Remember! We have seen examples of change-making in Chapters 3, 4, 5, 7 
and 8. 
3. A Bouncing Ball
While waiting for your date to show up, you idly bounced a tennis ball on the 
sidewalk.  This gave you the idea to develop a program to compute and 
display some data on the bounces a ball will make when dropped from a 
given height.  Forgetting your late date, you went home to solve this 
interesting problem. 
To simplify the problem, you assume the ball bounces in place; that is, it 
remains bouncing on the same spot and does not have any forward motion.  
The program will prompt the user for the initial height of the ball, the number
of bounces to consider, and the ball’s elasticity (which must lie between 0 
and 1).  It will compute the height of each bounce based on the initial height 
and the elasticity of the ball, and display it.  The program will also compute 
the total distance traveled, which is the sum of the up and down bounces, for
the given number of bounces, and display it.  The program will repeat this 
process until the user tells it to stop. 
If the ball is at height h, when it bounces, it reaches new height h’, which is 
computed by the formula

h’ = h ¥ resilience
where resilience is expressed as the elasticity coefficient raised to the nth 
power, if n is the bounce number: 



resilience = elasticityn
If the original height is H, then the first bounce height will be

h1 = H ¥ elasticity
With an elasticity with the range between 0 and 1, each bounce will be 
smaller than the preceding one, but never become 0.  We will therefore stop 
the program after a specified number of bounces. 
The ball will travel the distance shown in Figure 10.11 (where the elasticity is
0.8) which we have drawn to help you.  We have represented a forward 
motion for the sake of clarity (the ball bounces on the same spot). 
Problem 3 Distance traveled by ball as it bounces
Each time the ball bounces, it travels twice the height of the bounce, so the 
total distance traveled is

H + 2h1 + 2h2 + 2h3 + 2h4 + ... 
The user will be prompted for the initial height in this way: 
Give the height in inches from which the ball is dropped: 
Then the user will be asked the number of bounces: 
Give the number of times the ball will bounce: 
And finally the user will be asked the elasticity of the ball: 
Give the elasticity of the ball (between 0 and 1): 
For each bounce the program will display the following: 
On bounce 9 the ball rises to a height of 99.9 inches. 
After the last bounce the program will display the following: 
The total distance traveled by a ball with an elasticity of 0.999
when dropped from a height of 99.9 inches
and after bouncing 9 times is 999 inches. 
The user will be asked if the program is to continue: 
Another try?
Level 2 — Getting Organized with Subprograms
The second level of problems requires the use of subprograms to manage 
larger programs. 
4. General Application:  Your Age in Days
Your problem is to write a program that will read in a person’s birth date as 
well as the current date, compute and display the person’s age in days.  The 
program will have to be interactive, to validate the dates it reads and to 
display results in a clear manner.  When the dates given are incorrect, 
precise messages should be displayed.  The program should be set up in 
such a way that it can compute repeatedly a number of ages and let the user
decide when to terminate execution. 
The various output formats are mostly user prompts and error messages. 
Enter birth date in the form DD MM YY: 



Enter current date in the form DD MM YY: 
Today you are 2059 days old
Want to compute another age?
Incorrect value for month. 
Incorrect value for day. 
Incorrect value for year. 
Incorrect values for day and month. 
Incorrect values for month and year. 
Incorrect values for day and year. 
Incorrect values for day, month and year. 
You are not born yet!
5. Business Application:  What's the Cost of My Mortgage?
The loan department of your bank still uses silly tables to determine what 
the monthly payment of a mortgage loan is going to be.  The consumer 
association wants you to design a program to compute interactively monthly 
mortgage payments as well as the cost of such a annual loan over the first 5 
years of the loan, and the total cost of that loan.  In order to validate the 
input data, the loan amounts must be between $1,000 and $500,000, the 
loan interest must be between 3 and 20%, and the loan length must always 
be between 1 and 35 years. 
First, we must compute the monthly payment.  To see how this can be done, 
let’s start with a simple example and build up to the general case. 
Suppose a loan of $1000 made at an interest rate of 10%.  If there is to be a 
single payment P at the end of the load period then

 or 
If the repayment were to be made in two equal payments of P spaced at 
equal intervals and the interest rate for each of the periods were 5%, then P 
must be such that

whence

More generally, if we make a loan of L to be repaid in n payments of P and an
interest rate of r per repayment period, then the n payments P must be such 
that

If we multiply both sides of this identity by 1 + r, we obtain

If we subtract the first identity from the second, many terms cancel out and 
we are left with

whence



In the case of our mortgage, where the payments are made every month 
over a period of y years, we can express this as

Now, our problem calls for the interest rate to be expressed as an annual 
rate and the monthly rate must be derived from this.  Although banks are a 
little secretive about the formulas they use to compute mortgages, we know 
that to take account of the effects of compounding, they use a monthly rate 
that, if compounded twice per year, will yield the stated annual rate of 
interest.  Loan rate tables show you that

which leads to

or

and finally

The program will use these formulas to compute and display the monthly 
payment of a given mortgage loan and to produce a detailed report of the 
payments over the first 5 years if needed. 
The output format used will be the following: 
Amount of mortgage loan: 
Annual interest rate: 
Length of mortgage loan (in years): 
Monthly payment: 999.99
Do you want a detailed report?
Interest paid in 5 years:12345.67
5 year balance: 23456.78
Total cost of mortgage loan: 34567.89
The detailed report format will be the following: 
Payment# Interest Capital Sum.  Int. Balance
1 97.5944.2197.599955.79
2 97.1644.65194.75 9911.14
6. Scientific Application:  Solving the Quadratic Equation
The problem you have to solve now is the well-known quadratic equation.  
Remember its form?

ax2 + bx + c = 0
Your program will accept the values of the three coefficients a, b, and c and 
then compute the roots of the equation.  The program will prompt the user 
for the three coefficients repeatedly, and stop when the user enters three 
zeroes for the coefficients.  The program will distinguish between the various
solutions and display the results 



with an appropriate message:  one root, double root, real roots, complex 
roots, as well as an error message if coefficients a and b are zero while c is 
not. 
The output formats for prompts and results will be the following: 
Give values of three coefficients: 
Contradiction: 2.0 = 0
One root = -25.0
Double root = 120.0
Root 1 = -2.0
Root 2 = -1.0
Complex roots = -18.0 +/- 12.4i
Level 3 — Getting Fancier with Parameters
The third level of problems again requires the use of subprograms to manage
larger programs.  It provides practice in how to parameterize those 
programs. 
7. General Application:  Count the Word Occurrences in a Text
We want a program to read a text, to extract the various words from the text,
and to count the number of occurrences of each word.  The program will 
output a list of all the words in the text in alphabetical order (ascending or 
descending) with their number of occurrences.  A word is defined to be a 
sequence of characters between two separators, and the separators will 
include all punctuation signs, as well as all available special characters.  In 
fact, a separator will be any character other than a letter (upper case or 
lower case) or a digit. 
The program will prompt the user for the name of a text file to use as input 
file.  It will read the entire file, separate the words and count their 
occurrences, and finally display the words in alphabetical order, one per line, 
with their corresponding number of occurrences. 
The input and output formats can be summed up by the following messages 
and examples of output. 
Give the name of your text file: 
In what order do you want the word list? (A/D): 
Number of occurrences for the 96 words found in fffff.ttt

Word:  Occurrences
 A 18
 At  1

Words table is full, no room for xxxxxx
Hint:  Although this problem can easily be solved with arrays, if you are 
smart and have understood the Build Index case study, it might be easier for 
you to re-use and adapt that case study!
8. Business Application:  Processing Personnel Data



Your chum Arnie, from the personnel department of the good old municipal 
services, has just given you a frantic call.  He needs, right now, all sorts of 
employee lists, and his information systems department just told him it 
would take three to six months for them to produce a feasibility study for a 
needed program to read, sort, and display data on municipal employees.  
Obviously, he will get nowhere with his own services, and has the OK to 
contract out to you the writing of this program. 
Further prodding on your part elicits a little more information on the 
program.  It must be interactive; it must run on a personal computer; it will 
be used by his boss in the personnel department; it should be able to read 
various employee files; and it should be able to sort employee records 
extremely quickly by name, by age, or by seniority, and to display these 
records in four different simple formats.  The employee files all have the 
same format:  one line per employee with family name, followed by first 
name, employee number, hiring date, birth year, and various information 
including the social security number. 
The program will display a short menu to the user, and read and validate the 
user’s choice.  The menu format will be the following: 
1.  Read data from file
2.  Sort by age
3.  Sort by name
4.  Sort by seniority
5.  Display name and birth year
6.  Display name and first name
7.  Display name and hired date
8.  Display all information
9.  Exit program
Please enter your selection and press return: 
The program will have to make sure that operations 2 to 8 are not usable 
until operation 1 has been used at least once.  The program will display the 
following error message: 
No data has been read yet
After each sort, one of these message will be displayed: 
Employees sorted by age
Employees sorted by name
Employees sorted by seniority
The output formats for operations 5, 6, 7, and 8 are quite simple.  The 
employee name will be followed by a single value, or all the values: 
Berger 1956
Berger Antonia



Berger 710221
Berger Antonia BERA0 710221 1956 198-39-9739 Middle-management
The personnel department foresees a new format for employee records that 
would double or even triple their size.  The sorting of employee records must 
be designed so that the change in size of the employee records does not 
unduly affect the sorting time (Hint:  Use the sort and rank method 
introduced in Chapter 9). 
In order to read in the employee data, the program will prompt the user in 
the following manner: 
Please give name of employees file: 
Once the data have been read, a message indicating the number of records 
read will be displayed: 
Number of employee records read:  99
In the case of a large file, the program will check that the data can be stored 
in the employees table.  If not, it will display the following message and skip 
the rest of the file. 
File too large, input truncated
9. Scientific Application:  Plotting a Function
In this graphic era, we want to be able to plot a given function y = f(x) 
between two values of x.  The plot of such a function will be graphical and 
will appear in the usual manner, that is, assuming a vertical y axis and a 
horizontal x axis.  We want the plot to show the minimum x and y values with
lines parallel to the axes together with an indication of the x and y values.  
We also want the user to be able to plot any function of one variable, and to 
define the range of x values for the plot, as well as the size of the plot. 
A typical output would look as shown below. 
Problem 9 Plot for y = x
Level 4 — Getting Your Wings with Units
The fourth level of problems requires the creation and use of separately 
compilable units to construct a complete program. 
10. General Application:  The KWIC Index
Suppose we were interested in programming languages and looking for 
books or papers on the subject.  It will be easy to find promising titles in a 
listing provided that the authors have been considerate enough to put the 
words Programming Language at the beginning of the title.  Thus the book 
Programming Language Concepts would be where we expect to find it in the 
alphabetical ordering.  However, the paper A Comparative Study of 
Programming Languages will be in another part of the listing and, unless we 
think of looking under Comparative, we would be unlikely to find it without a 
sequential 



scan through the catalogue.  This scan would rapidly exceed our attention 
span, making us very likely to miss items. 
The Key Word in Context (KWIC) index tries to solve this problem by listing 
each title several times, once for each of its keywords (“noise words” such as
a, the, and, of, and so on, are not counted as keywords).  We might define a 
KWIC index as being produced by taking each title, generating circularly 
shifted copies, each with a different keyword at the beginning and then 
sorting the newly generated list alphabetically.  A circularly shifted copy is 
formed by moving one or more words from the beginning of the title to the 
end.  The title A Comparative Study of Programming Languages would 
appear four times as: 
Comparative Study of Programming Languages.  A
Study of Programming Languages.  A Comparative
Programming Languages.  A Comparative Study of
Languages.  A Comparative Study of Programming
This is not very easy to read and so in the final form of the index, part of the 
listing might be rearranged as: 

A Comparative Study of Programming Languages
 Programming Language Concepts
 Programming Language Landscape:... 
 Programming Language Structures
 A Comparison of Programming Languages for Softw... 
 Programming Languages:  Design a... 
 Principles of Programming Languages:  Design, ... 
...ion to the Study of Programming Languages
 Concepts of Programming Languages
 Concurrency and Programming Languages
 Fundamentals of Programming Languages
...cture and Design of Programming Languages

where the titles have been aligned on the word that is being used for the 
alphabetical ordering and sufficient other words are provided to give some 
context.  Also appearing would be a citation to allow the reader to find the 
work. 
The KWIC program accepts an ordered set of lines, each line being an 
ordered set of words, and each word being an ordered set of characters.  
Each line consists of two parts:  a Title Part and a Reference Part.  The 
Reference Part is enclosed in brackets.  It is assumed that brackets never 
occur in either the Title Part or the Reference Part other than as identification
of the Reference Part.  An example of input data is: 

Software Engineering with Ada [Booch 1983]
The Mythical Man Month [Brooks 1975]



An Overview of JSD [Cameron 1986]
Nesting in Ada is for the Birds [Clark et al.1980]
Object Oriented Programming [Cox 1986]
Social Processes and Proofs of Theorems and Programs [DeMillo et 

al.  1979]
Programming Considered as a Human Activity [Dijkstra 1965]

A Title Part may be circularly shifted by removing the first word and 
appending it at the end of the line to form a new Title Part.  From each line in
the input data, new lines are constructed by appending a copy of the 
Reference Part from the original line to all distinct circularly shifted Title 
Parts.  The first word of each such line is the keyword.  Those Title Parts that 
begin with the keywords:  a, an, and, as, be, by, for, from, in, is, not, of, on, 
or, that, the, to, with, and without are ignored. 
The output of the KWIC program is a listing of all the titles constructed in this
way and presented so that the title is presented with its original word 
ordering with all keywords lined up vertically in the center of the page.  
Where a line must be truncated at the beginning or end in order to fit on the 
printed line with the keyword aligned the truncation is shown with an ellipsis,
(…). 
11. Business Application:  Information Retrieval
The board of directors of the Piranha Club, of which you are a member, has 
commissioned you to implement a small database system for the members 
of the club.  Members will give information that will be stored in the system 
and will be retrieved for the benefit of other members. 
The data for the members will be kept in a permanent file and the system 
will allow the addition of new members, as well as the deletion of departing 
members, and also the updating of member information.  Some security 
checks will be implemented in the system by keeping a password with each 
member’s data, and requiring that password for certain operations.  The 
password will be kept in the system in a ciphered form in order to improve 
system security. 
The system will display a menu of the possible operations to the user, who 
will then choose the desired operation.  On program exit, the members table 
will be automatically stored in a new file. 
After discussions with the board of directors, the following formats are 
agreed upon.  The format of the menu will be the following: 

1. Add a new member
2. Check membership
3. Get a member's name



4. Get a member's address
5. Get a member's phone number
6. Get information on a member
7. Change member's password
8. Remove member
9. Show member list
10. Exit program

Please enter your selection and press return: 
The various messages of the query system will be the following: 
• Initialization from a data file
Initializing members table.  Give file name: 
• Addition of a new member
Give ID of member to add: 
Give member name: 
Give member address: 
Give member phone number: 
Give member password: 
Member added
• Checking a membership
Give ID of member to look for: 
XXXXXXX is a member. 
XXXXXXX is not a member. 
• Information query on a member
Give ID of member: 
The member's name is: 
The member's address is: 
The member's phone number is: 
Sorry but this ID does not belong to a member. 
• Changing a member’s password
Give ID whose password must be changed: 
Give new password: 
Give your old password: 
Give new password again: 
Password has been changed. 
Wrong password. 
You don't seem to be sure. 
Password has not been changed. 
• Removal of a member
Give ID of member to eliminate: 
Give Password of member you want to eliminate: 
Wrong password, member could not be removed. 
Member removed. 
• Display of the member table



Give administrative password: 
Sorry but you do not have access to the list. 
• Copy of members table into a data file at end of execution
Saving members table.  Give file name: 
12. Scientific Application:  Complex Algebra
Several methods are known to find the roots of an equation.  One of the most
efficient of these methods is the Newton-Raphson method, developed by 
Isaac Newton around 1685, and refined by Joseph Raphson in 1690.  We can 
design a program to apply the method without much difficulty.  However, 
now that we have reached level 4, we can be a little more ambitious.  We will
design and implement a program to apply the Newton-Raphson method to 
find the root of a polynomial equation in x of a given degree whose 
coefficients are complex numbers (Hint:  Create a Complex numbers unit). 
The program will read in the degree of the equation, the corresponding 
coefficients, the requested accuracy, and the starting point for the Newton-
Raphson method.  It will apply the method and return a result for the root or 
an explicative message when the root cannot be computed.  The program 
will repeatedly prompt the user for data, and stop when the user wants to 
stop. 
The following is the format of the dialogue messages that will be used by the
program. 
Give the degree of the polynomial: 
Give the polynomial coefficients defining the function: 
Coefficient of degree 9; real part: 
Coefficient of degree 9; imaginary part: 
Indicate the precision you wish to achieve: 
Indicate the maximum number of iterations: 
Now give the starting value for x(real part): 
Now give the starting value for x(imaginary part): 
The root is 9.9999999999 + 9.9999999999i
Newton-Raphson took 9 iterations. 
For a precision of 9.999999E-09
More?
Let’s review briefly the Newton-Raphson method, considering first only 
polynomial functions with real variables and real coefficients.  Given a 
function of variable x, F(x), we want to find the value of the root in the 
neighborhood of a.  Figure 10.13 illustrates a function and its tangent at x = 
a. 
Problem12 Newton-Raphson method
The linear tangent to F(x) at point (a, F(a)) intersects the x axis at point b, 
which may be closer to the root than a.  Point b is then used as a new 
approximation of the root value, and the same process is 



repeated.  It is possible to compute the value of b if we know F’(x), the first 
derivative of F(x). 

Slope = F(a)/(a - b) = F’(a)
gives: b = a - F(a)/F’(a)
The method will fail if the slope is zero, as the tangent is parallel to the x 
axis:  in that case there is no root in the vicinity of the point.  We must 
protect ourselves against failure by not allowing a division by zero, and by 
limiting the number of iterations.  This can be directly transposed to complex
numbers. 
Appendix   Solutions
This appendix contains the solutions to the first few problems at the end of 
each chapter.  Oftentimes, there may be many correct answer for the same 
question; however, only one answer to each problem is provided.
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Chapter 1 Solutions 1-3
Solution to Problem 1

a. Keyboard — human environment.
b. Analogy-Digital Converter — physical environment.
c. Scanner — human environment.
d. Mouse — human environment.
e. Clock — physical environment.

Solution to Problem 2
a. Display — human environment.
b. Sensor — physical environment.
c. Digital-Analog Converter — physical environment
d. Scanner — human environment
e. Clock — physical environment

Solution to Problem 3
a. Alan Turing developed a machine used to define the limits on 

what is computable.
b. Al-Khwarizimi studied sets of rules which are now called 

algorithms.



c. It is not clear who designed and built the first electronic digital 
computer.  The contributor is not in the list.

d. George Boole discovered that symbolism of mathematics could 
be applied to logic.

e. Charles Babbage designed the first general-purpose “analytical 
engine”.

f. John Von Neumann introduced the concept of a stored program 
where instructions and data are both stored in memory.

g. Blaise Pascal designed the first mechanical adding machine.
Chapter 2 Solutions 1-3
Solutions to problems 1 through 3
Chapter 3 Solutions 1-7
Solutions to problems 1 through 7
Chapter 4 Solutions 1-3
Solution to problem 1
Solution to problem 2
Solution to problem 3
Chapter 5 Solutions 1-3
Solution to problem 1
Solution to problem 2
Solution to problem 3
Chapter 6 Solutions 1-3
Solution to problem 1
Solution to problem 2
Solution to Problem 3

Vertical View:  Loop invariant is P = 2¥T – 1 = T + T - 1.
Horizontal View:  Even terms are subtracted from the sum S.

Chapter 7 Solutions 1-3
Solution to Problem 1 
Here is a definition of divide that involves multiplication:  Num = Den ¥ Quot 
+ Rem.  Try values of Quot until Remainder is less than the Denominator, 
where Rem = Num - Den ¥ Quot.
Solution to Problem 2 
Solution to Problem 3 
Chapter 8 Solutions 1-3
Solution to Problem 1
This algorithm does nothing, but it does it the hard way.  First it swaps A[0] 
with A[N], then A[1] with A[N-1], etc., so it seems to reverse the array.  But 
after reaching the midpoint (when all entries 



are reversed), it continues to reverse the reversed values (ultimately 
swapping A[N] with A[0] again).  To get a true reverse, the loop should end at
N/2.
Solution to Problem 2
Solution to Problem 3
Chapter 9 Solutions 1-3
Solution to Problem 1
There are four ways to do this “Simple Sort”, in about one pass! Such 
efficiency is not possible in general but here the binary values make it 
possible. We could use a second array B for the result or do it “in place”.

a. Count: Loop through A counting the zeros, then loop again 
putting in that many zeros and then filling the rest with ones.

b. Select: Loop through A, for each zero in A, put a zero into array 
B, when done finish B with ones.

c. Swap: (in place): Position “pointers” at each end of A, advancing 
them inward and while they do not meet, compare values at these points, 
swapping when necessary.

d. Insert: Position “insertion points” in array B at the ends. Loop 
through A, inserting each value at the appropriate point in B.
Solution to Problem 2

a. The easy way: Sort the value first and then select the one at the 
middle index.

b. Like Count Sort: Loop through values of the array stopping when 
half the values are less than the given value.

c. Keep selecting the Max and Min values and delete them until 
only one value remains.
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